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Aufgaben

Aufgabe 989. Es seien a,,a,, a5 die Winkel eines ebenen Dreiecks und «; < a5, 5. Dann
gilt die Ungleichung

o, < 2arccot (\/3 + > (1/a;) — 9/7)

mit Gleichheit genau im gleichseitigen Fall. Dies ist zu beweisen.

V. D. Mascioni, Origlio

Losung. O.B.d.A. darf noch «, < a5 vorausgesetzt werden, was mit o, < (7 — a,)/2 dqui-
valent ist. Da die behauptete Ungleichung mit

(*) cot(ey/2) — 1/o, +9/m — /3 2 1/o, + 1/(m — 0y — ;)

fir o, £ a, < (m — a,)/2 gleichbedeutend ist, wobei 0 < a; < /3 zu gelten hat, gentigt es
festzustellen, dass die rechte Seite von (*), betrachtet als Funktion von a,, im Intervall
[e,, (m — a;)/2] monoton fillt. Daher ist (*) richtig, sobald

(**) F(x;):=cot(a,/2) — 2/o; —1/(m —2a,) = \/3 —9/n
fiir alle a, €]0, /3] bewiesen ist. Aus sin’ y < y? fiir alle reellen y folgt
F'(x) = —1/2sin*%) + 2/x* = 2/(n — 2x)* < — 2/(n — 2 x)?,

weshalb F in ]0,7/3] streng monoton fillt. Damit ist F(a,) = F(n/3) = \/5 — 9/n fiir
0 < a, £ n/3 mit Gleichheit genau fiir «, = n/3, d. h. im Fall der Gleichseitigkeit.

P. Bundschuh, Kéln, BRD
Weitere Losungen sandten W. Janous (Innsbruck, A), L. Kuipers (Sierre), Kee-wai Lau

(Hong-Kong), B. Ruh (Ziirich), P. Weisenhorn (Achern, BRD).
Eine Losung war fehlerhaft.
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Aufgabe 990. Gegeben sei eine beliebige komplexe magische (3, 3)-Matrix A (d. h.: alle 6
Zeilen- und Spaltensummen sowie die Summen der Haupt- und Nebendiagonalen stim-
men Uberein). Man ermittle die Eigenwerte von A.

I. Paasche, Stockdorf, BRD
Losung. Jede magische (3, 3)-Matrix A kann wie folgt geschrieben werden:

3a 3b 3¢
A=| —2a+b+4c a+b+c 4a+b—-2c
2a+2b—c¢c 2a—-b+2¢c —a+2b+2c

mit a,b,ce C und m:=3(a + b + ¢) als magische Summe.
Fur die Eigenwerte 4,,4,,4; von 4 gilt:

detA=).1A.2).3,
und
SpurA=}~1+212+i3=m.

Da offensichtlich

1 m
A 1 )J=\m
1 m
gilt, ergibt sich sofort: 1, = m. Somit muss 1, = — 45 sein.

Wegen

detA=m-(—9a*+9c*+18ab—18bc)
und

detAd=—m- A2

erhilt man schliesslich

A,=3/@a—c)(a+c—2b)
dy=—3Jl@a—c)a+c—2b)

W. Raffke, Vechta, BRD

Weitere Losungen sandten J. Binz (Bolligen), R. Bundschuh (Hiirth, BRD), K.-D. Drews
(Rostock, DDR), J. M. Ebersold (Winterthur), A. A. Jagers (Enschede, NL), W. Janous
(Innsbruck, A), L. Kuipers (Sierre), H. Kummer (Burgdorf), A. Miiller (Ziirich), B. Ruh
(Ziirich), Hj. Stocker (Wadenswil), K. Schiitte, Miinchen (BRD), M. Vowe (Therwil),
P. Weisenhorn (Achern, BRD), R. Wyss (Flumenthal; 2 Lésungen).
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Aufgabe 991. Prove that if the area of face S of a tetrahedron is the average of the areas
of the other three faces, then the line joining the incenter to the centroid of the tetrahedron
is parallel to face S.

S. Rabinowitz, Littleton, USA
Losung (n-dimensional). Ein n-dimensionales Simplex habe die Eckenmenge E =
={P1,P3s---5 Pn+1)> den Schwerpunkt G, den Inkugelmittelpunkt I, den Inkugelradius
¢ und den n-dimensionalen Inhalt V.
Seine (n — 1)-dimensionalen Randsimplices M; mit Eckenmengen

E\{p} (=1,2...,n+1)

haben den (n — 1)-dimensionalen Inhalt A;, und es gelte die Voraussetzung

1 n
_ZAi=An+1'
ni=1

Dann gilt

1o gA,,+1 ist dann je der n-dimensionale Inhalt der beiden Simplices
n n

{P1:P2,---, Pnr I} und {py,p;, ..., P, G}.
I und G liegen folglich in einer (n — 1)-dimensionalen Parallelhyperebene zu M, . ,; somit
ist die Gerade IG zu M, , parallel.

J. Binz, Bolligen

Weitere Losungen sandten W. Janous (Innsbruck, A), L. Kuipers (Sierre), O. P. Lossers
(Eindhoven, NL), P. Weisenhorn (Achern, BRD).

Aufgabe 992. It is shown in [1] that

V2(@? +b?) = /a?cos? 0 + b*sin? 0 + \/a?sin? 0 + b?cos’ 6 2 a + b.

Prove more generally that
n 1/p
(*) n*"' X aly 2524
i=1

n
- 1 - -
where S= 3 {afxf+afxli, +...+aixt,, ,} P A=Ya;, p=1, X;=Xpn

i=1

P —
and 3. xf =1. M. S. Klamkin, Alberta, CD
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Lésung. Die Funktion f(x) = x!/? (x > 0) ist konkav. Wegen Y x? = 1 liefert die Jensen-
sche Ungleichung i=1

f@ixt +asxt,+...+aixt, )Z2x @)+ xP, f@)+...+xfy,- f(a])

n
fa.i=1,...,n. Summation iiber i =1,..., n liefert wegen x;, = x;,, und Y x? =1 die
i=1

rechte Seite der behaupteten Ungleichung. Fiir p =1 steht auf der linken Seite der
behaupteten Ungleichung offensichtlich das Gleichheitszeichen. Ist p > 1, so gilt mit
q = p/(p — 1) nach der Holderschen Ungleichung

n 1/p
1/q
n (Z (@] x? + a5 xPey + ... +a5xf+n~1>
i=1

n
1
2 Y (@ xP+abxte +.. +afixt, )P
i=1

Dies ist wegen x; = x;,, und > xP =1 die linke Seite der behaupteten Ungleichung,

i=1
H.-J. Seiffert, Berlin

Weitere Losungen sandten J. Binz (Bolligen), P. Bundschuh (K6ln, BRD), W. Janous
(Innsbruck, A), H. Kummer (Burgdorf).

Neue Aufgaben

Die Losungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift erbeten bis
10. Februar 1990 an Dr. H. Kappus. Dagegen ist die Einsendung von Losungen zu den
mit Problem ... A, B bezeichneten Aufgaben an keinen Termin gebunden.

Bei Redaktionsschluss dieses Heftes sind noch ungel6st: Problem 601 A (Band 25, S. 67),
Problem 625B (Band 25, S. 68), Problem 645 A (Band 26, S.46), Problem 672 A (Band 27,
S. 68), Aufgabe 680 (Band 27, S. 116), Problem 724 A (Band 30, S. 91), Problem 764 A
(Band 31, S. 44), Problem 862 A (Band 36, S. 68), Problem 872 A (Band 36, S. 175), Auf-
gabe 880 (Band 37, S. 93).

Aufgabe 1013. Fiir beliebige ne N ist die Summe

54
n 1/ n+1 1/ n+2 %
S"_;Eo {(2k+1>+5<2k+1)_1<2k+1>} 3

geschlossen auszuwerten. L. Kuipers, Sierre
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Aufgabe 1014. A circle meets each side of a regular n-gon, A; A, A;... 4, in two points.
The circle cuts side A4; 4;,, (with 4,,, = A,) in points B; and C; with B, lying between
A; and A;,, and C,; lying between B, and A4;,,. Prove that

M=

|4; B| =

i
1 i

|Ci Ais il

i

]

i

S. Rabinowitz, Westford, USA
Aufgabe 1015. Die Zahlenfolge (a,) ist durch ay =1, a;, = 2, a, = 3 und die Rekursion

1 a, a,_,

-1 Gu-2|=1 (ng:})

1 a,_, a,_3

1 a

gegeben. Man bestimme a, als Funktion von n und berechne

hm (an/an + 1) .

n-— oo

J. Binz, Bolligen

Aufgabe 1016. Fiir nichtnegative reelle Zahlen x, y, z beweise man die Ungleichung

(\/(x+y+z)2+4xyz—x—y—z+1)(yz+zx+xy)g6xyz.

Wann genau gilt das Gleichheitszeichen?
W. Janous, Innsbruck, A
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