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Kleine Mitteilungen

An explicit formula about the convex hull of random points

Denote by ¥ the expected volume of the convex hull of n points chosen independently
according to a given probability measure u in Euclidean d-space E%. For d = 2,3 and u
the uniform distribution on a convex body in E¢, Affentranger [1], [2] has shown that
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where the y, can be obtained recursively from y, =1,2y, =1 - X (2 ) 1)yi (k = 2).
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Recently, Buchta [3] has extended this result to arbitrary dimensions d and to arbitrary

probability measures u on E®. The key point in [3] is the existence of a moment functional
A such that

@ <d+1+n

Vi¥14n= d+1 ),/ll(x"+(1——x)"). (2)

(See [4] for the definition of moment functionals.)
In this note we show that in formula (1) the y, can be expressed explicitly by

yk=(22k~1)§f‘- k=1,2,..). 3)

Here the B, are the Bernoulli numbers (see e.g. [S], section 1.13), defined by the generating

series z/(e* — 1)= Y. B,z"/nl. In our proof of formula (1) we can avoid the elimi-
n=0

nation process used in [1].
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The Euler polynomials E, (x) (see e.g. [5], section 1.14) are defined by the generating series

Y SR (d<m @
= X}— .
e+1 ,=o " 'n! Z
Usually, the Euler polynomials are expanded in powers of x — 7. We need the less known

expansion in powers of x. Thus put B, = E, (0). Then the numbers B, are defined by the
generating series

n

= B (l<m. 0

n!

2
e +1

Differentiation of 2/(e* + 1) gives the even function — 2e*/(e* + 1)?; hence B,, = 0 for
n > 1. Since

2z _ 2z 4z
e+1 e—1 e*2-1°

we can also express B, in terms of the Bernoulli number B, , ,

_ 2n+1 _ 1 6
- ©
We read off from (4) that E,(x) =1, E, (x) =nE,_, (x). This leads to
n - ny =~ n—k
E,x)=x"+ B, x"". (7)

Next, we see from 2 e “¥7/(e* + 1) =2e **/(e * + 1) thatE,,,_, (x) + E,,,_ (1 —x) =
Now we obtain the key expansion by substituting this in equation (7) and by using
B, =0:

2m—1

2m-1  y)2m-—1 _
x + (1 —x) Z(Zk—l

)BZk L (P72 (1= X)), (8)

Finally we use expression (2) for V9, and substitute it into equation (8). This gives

d+2m\ ™ (2m—1) 4 d+2m—2k+1\7!
V:i(i)l"'=_<d+1>k§1<2k—1>B2k_1( d+1 ) Vilom-2u+1

d+2m
= - Z (2k~1>32k 1Vd+2m 2k+1°

In view of (6), this proves (1) and (3).

E. Badertscher, Mathematisches Institut der Universitdt Bern
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Aufgaben

Aufgabe 989. Es seien a,,a,, a5 die Winkel eines ebenen Dreiecks und «; < a5, 5. Dann
gilt die Ungleichung

o, < 2arccot (\/3 + > (1/a;) — 9/7)

mit Gleichheit genau im gleichseitigen Fall. Dies ist zu beweisen.

V. D. Mascioni, Origlio

Losung. O.B.d.A. darf noch «, < a5 vorausgesetzt werden, was mit o, < (7 — a,)/2 dqui-
valent ist. Da die behauptete Ungleichung mit

(*) cot(ey/2) — 1/o, +9/m — /3 2 1/o, + 1/(m — 0y — ;)

fir o, £ a, < (m — a,)/2 gleichbedeutend ist, wobei 0 < a; < /3 zu gelten hat, gentigt es
festzustellen, dass die rechte Seite von (*), betrachtet als Funktion von a,, im Intervall
[e,, (m — a;)/2] monoton fillt. Daher ist (*) richtig, sobald

(**) F(x;):=cot(a,/2) — 2/o; —1/(m —2a,) = \/3 —9/n
fiir alle a, €]0, /3] bewiesen ist. Aus sin’ y < y? fiir alle reellen y folgt
F'(x) = —1/2sin*%) + 2/x* = 2/(n — 2x)* < — 2/(n — 2 x)?,

weshalb F in ]0,7/3] streng monoton fillt. Damit ist F(a,) = F(n/3) = \/5 — 9/n fiir
0 < a, £ n/3 mit Gleichheit genau fiir «, = n/3, d. h. im Fall der Gleichseitigkeit.

P. Bundschuh, Kéln, BRD
Weitere Losungen sandten W. Janous (Innsbruck, A), L. Kuipers (Sierre), Kee-wai Lau

(Hong-Kong), B. Ruh (Ziirich), P. Weisenhorn (Achern, BRD).
Eine Losung war fehlerhaft.
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