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A characterization of the tangent function

T(u)+ T(v)
1-TwT(@)
proved that the tangent function is the only such function having domain {x:x real,
x %2+ mm,m an integer} and satisfying T'(0) = 1.

Real-valued functions T satisfying the identity T'(u + v) = are studied. It is

During the past decade, several of our articles ([1], [2], [3], [4], [5]) have suggested a more

fundamental role for the tangent function, tan, in the curriculum. Many of these sugges-

. tanu + tanv . o
tions depend on the fact that tan(u + v) = whenever the right-hand side is
1 —tanutanv

defined. It seems natural to ask whether this functional identity characterizes tan. Accord-
ingly, this note considers the class of tangential functions, by which we mean real-valued

, , T(w)+ T() :
functions T of a real variable such that T(u + v) = —————— whenever the right-
1—T(w)T(v)

hand side is defined. In proposition 1(c), we produce infinitely many discontinuous
tangential functions, thus answering the above question in the negative. On the other
hand, Theorem 3 establishes that tan is the only tangential function T which is defined
at all real numbers other than 7 + mn (for m an integer) and satisfies T’ (0) = 1. We hope
that the material in this note will find use as enrichment material in introductory courses
on calculus.

We begin by collecting some examples of tangential functions.

Proposition 1. Each of the following functions T is tangential:

(a) T(x) =1 for each real number x;
(b) T(x) = — 1 for each real number x;
(c) Let p be a fixed prime number. If x is a real number, put

p
1 otherwise.

. m .
T(x) = {0 if x = — forsome integers m and n
Proof. (a) and (b): The functional identity holds by default since 1 — T (u) T (v) =0 means
that the identity’s right-hand side is never defined.
(c): We shall verify the functional identity. Without loss of generality, T (u) T (v) # 1. Thus

m

at least one of u, v is of the form —. If both u and v have this form, so does u + v, in which
d 040

case the functional identity reduces to the truism 0 = ——. On the other hand, if only

m
one of u, v has the form —, then u + v does not have this form, in which case the identity
pﬂ
1+0 0+1
orl=—. [ ]
1-0 1-0
A tangential function need not be continuous (and, hence, need not be differentiable).

reduces to either 1 =
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Indeed, if T is as in Proposition 1(c), then for each real number ¢, lim T (x) does not exist.

In Proposition 2(b), (c), we examine what can be said about a tangential function which
is continuous (or differentiable).

Proposition 2. Let T be a tangential function. Then:

(a) If T(0) is either 1 or — 1, then T (x) = T (0) for each x in the domain of T

(b) Suppose that the domain of T contains a neighbourhood of 0. If T is continuous at
0, then Tis a continuous function.

(c) Suppose that the domain of T contains a neighbourhood of 0 and that 7' (0) = 1.
Then T is a differentiable function. In fact, T’ (x) = 1 4+ T (x)? for each x in the domain
of T Moreover, T(0) =0 and T is increasing on each subinterval of its domain.

Proof. (a) Suppose T(0)= +1 and T(x) % T(0). Then 1 — T(x) T(0) + 0, and so the
functional identity of tangential functions leads to

T(x)+TO) T(x)+1

T =T+ 0= T " 157

whence T(x)[1 F T(x)] = T(x) + 1 and T(x)?> = — 1. This contradicts the fact that T is
real-valued

(b) Since constant functions are continuous, (a) allows us to suppose that T(0) + + 1.
Hence 1 — T(0)* # 0, and so the functional identity gives

T(0) + T(0)
1— T2’

whence T (0)[1 — T(0)*]=2 T (0) and 0= T (0)*> + T(0)= T (0) [T (0)*> +1]. As T(0)> +1 %0,
we have T (0) = 0. By hypothesis, lim T'(h) = T(0) = 0. For each x in the domain of T,

T()= T+ 0) =

h—-0
. o T@ATH o [+ TEATE
hm T(x +h) = T = him oy — T = hm = iy

[1 + T(x)*10

which, by limit theorems, is just 1—(T(x)0

is continuous at x, proving (b).
(c) Since T (0) #* 0, it follows from (a) that T'(0) + + 1. Hence, by the proof of (b), we have

T (h Th)—T(@O
T (0) = 0. It follows that lim —(—) = lim _(_)_iz—_(_) = T'(0) = 1. Now, for each x in the

h—0 h-0

=(0. Thus lim T(x + h)=T(x),and so T
h=0

domain of T, we see, as in the proof of (b), that

TR -TE _T(h) 1
o h = jJm i+ T L-TWT@]

a1 |
=U+TM]1[¥_N$0}
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that is, T'(x) = 1 + T(x)*. In particular, T’ (x) > 0. The final assertion is a standard
consequence of the Mean Value Theorem. [ ]

We next obtain the desired characterization of tan. For motivation, note that
tan’ (0) = sec?(0) =12 = 1.

Theorem 3. Let T be a tangential function such that T'(0) =1 and each real number
X # 3 +mmn ( for m an integer) is in the domain of T Then T = tan.

Proof. First, we restrict attention to x in the open interval (- 3,%). By Proposition 2(c),

T satisfies the variables-separable differential equation y’ = 1 + y2. This leads to

x=x—0={dt= & = 5
0 T(0)1+S 0 1+S

=tan" ! (T(x)) — tan" ! (0) = tan " ! (T (x)) — 0 = tan~ (T (x)).

Hence, T(x) = tan(tan™ * (T (x))) = tan(x) for all x in (— Z,5)- [Remark: A short classroom
discussion might well end here, as we have just used/reinforced the fundamental theorem
of calculus and the chain rule, in the guise of definite integration by change of variable.]

Next, we focus on 7 < x(= 7+ mmn). First, suppose 7 <x <n. Then x=2u=u+y,
where u = v isin (3,3). As T and tan are both tangential, we may argue as follows, using

the result of the preceding paragraph:

B _ T+ T(y  tan(u)+ tan(v)
T =Tu+v)= 0 Tw ~ 1 tan (@) tan )

= tan(u + v) = tan(x).

Moreover, Proposition 2(b) yields that T is continuous, and so, since tan is also contin-
uous, we have T(nr) = lim T(x)= lim tan(x) = tan(n) = 0. Hence, by mathematical
x—n" xX—=n~

induction (and the fact that T is tangential), we have T (nm) = 0 for each positive integer
n. It now follows, by reasoning as above, that T and tan agree on (nn —3,nn + ).
Indeed, if x is in this interval, then x —nn =tan™!(T(x)) — tan™ ' (T (n n)), whence
T(x) =tan(x — nm) = tan(x). Hence, T and tan agree on (— %, 0)\{3,3%,3%, ..},

Next, we focus on — 3 > x(# 3 + mn). First, suppose —n<x < —7. Then x=2u
= u + v, where u = v is in (— 3, — ). In particular, T (u) = tan (u). It follows via tangen-
tiality as above that T (x) = T(u + v) = tan(u + v) = tan(x). Then, by considering the
limit as x approaches — 7 from the right and invoking continuity, we see that T(— =) = 0.
By mathematical induction and tangentiality, T (— nn) = O for each positive integer n. It
now follows, by reasoning as above, that T and tan agree on (—nn—73, —nn + 7).
Hence, T and tan agree on the domain of tan.

We have seen that T'(x) = tan(x) if x # 7 + m = (for m an integer). To complete the proof,
it suffices to show that T'(5 + mn) is not defined. This, however, is a consequence of the
continuity of T, since l;zm T(x)= l;tm tan (x) does not exist. [ ]

-+ —=+mn
x5 tmn x5

David E. Dobbs, University of Tennessee, Knoxville
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Kleine Mitteilungen

An explicit formula about the convex hull of random points

Denote by ¥ the expected volume of the convex hull of n points chosen independently
according to a given probability measure u in Euclidean d-space E%. For d = 2,3 and u
the uniform distribution on a convex body in E¢, Affentranger [1], [2] has shown that

(d+2m

2k_1>Vd(-‘|{)2m~2k+1 (m=152a“~)9 (1)

m
d
Va(+)2m = kZ 14"
=1

k-1 /2 k—1
where the y, can be obtained recursively from y, =1,2y, =1 - X (2 ) 1)yi (k = 2).
i=1 1—

Recently, Buchta [3] has extended this result to arbitrary dimensions d and to arbitrary

probability measures u on E®. The key point in [3] is the existence of a moment functional
A such that

@ <d+1+n

Vi¥14n= d+1 ),/ll(x"+(1——x)"). (2)

(See [4] for the definition of moment functionals.)
In this note we show that in formula (1) the y, can be expressed explicitly by

yk=(22k~1)§f‘- k=1,2,..). 3)

Here the B, are the Bernoulli numbers (see e.g. [S], section 1.13), defined by the generating

series z/(e* — 1)= Y. B,z"/nl. In our proof of formula (1) we can avoid the elimi-
n=0

nation process used in [1].
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