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Der Satz iiber die Division mit Rest 1Bt sich auf die Partialbruchzerlegung anwenden.
Hat man in der Produktdarstellung (4) quadratische Faktoren g (s) = s> + fs + y und ist

P,
dort etwa Q, = q™, dann 148t sich der zugehorige Partialbruch ——; in(S)mitdegP, <2m

durch Division mit Rest in die bekannte Form q
Pl(s)mzbms+'fm b'””lstf’;‘“l.{_____‘_bls_*_cl ®)
(q(s) (q(s) (q(9) q(s)

mit eindeutig bestimmten Konstanten b,,c,, ..., b, c,, bringen. Das Verfahren wird am
folgenden Beispiel erldutert.

Beispiel. Ist etwa P, (s) = 25> — s* + 453+ 1 und Q, (s) = (s* + 1)3, so fiihrt wiederholte
Division durch s? + 1 auf

28 —s* +4s2 +1 =25 =5+ 25+ 1)(s> + 1) = 25,
252 —s2 4+ 2s+1=Q2s—=1)(s2+1)+2,
und damit lautet die Partialbruchzerlegung (8) in diesem Fall

2s5—s4+4s3+1_ 2s N 2 +2s——1
(s +1)° T (sE+1)? P41 sP+t
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On a discrete Dido-type question

We start with the following well-known fact [1]. If D is a simply connected domain of the
Euclidean plane with area ./ (D) whose boundary is divided into a segment and a simple

1
curve I' of length L(I'), then &/ (D) < T - I2(I') with equality if and only if D is a
T

hemicircle. In other words if we have a simple curve I' of given length L(I') in the
Euclidean plane, then the area of its convex hull is maximal if and only if I' is a hemicircle

ie. o (convl) < 7on -I?(I'). Reading these sentences we immediately thought of the
‘T

following discrete version of the above problem. We call it a discrete Dido-type question
since it is related to the well-known Dido-problem of Hajos ([3], [4], [S]) and also it is
related to the problem of [2], but we believe it to be a new question.
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Definition 1. A subset S of the Euclidean plane is polygonally connected if given any two
points X and Y in § there exist points X, =X,X,,...,X,_;, X, =Y such that
k

P= .Ul X, X; is contained in S, where X; , X, is the segment joining X;_, and

i

X;(1 i< k). The set P is called a polygonal path from X to Y.

Problem. Suppose that we have a finite number of segments in the Euclidean plane such
that they form a polygonally connected subset of the plane (Fig. 1). Provided that we may
not change the lengths of our segments find the polygonally connected arrangement the
area of the convex hull of which is maximal.

Figure 1

Conjecture. The extremal arrangement is the polygonal path of the segments which is
inscribed a hemicircle (Fig. 2 a).
Of course the order of the segments in this polygonal path can be arbitrary. Also, it seems

to be true that the polygonal paths mentioned above are the only extremal arrangements
except the case of three segments (Fig. 2b).
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Figure 2a Figure 2b

In the present note we are going to prove the following two theorems, the first of which
supports our conjecture and the second of which shows that our problem can lead to
some interesting configurations in the higher dimensional Euclidean spaces as well.

Definition 2. A graph is simple if it does not contain loops or parallel edges, and a graph
is connected if for any two vertices there exists a path of the edges from one vertex to the
other.

Theorem 1. Let G, be an arbitrary connected simple graph of n edges (n = 4) embedded
in the Euclidean plane such that the edges are segments. If GH,, is the polygonal path of
n segments which is inscribed a hemicircle and the segments of which are congruent to
the n segments of G, then the area .« (conv G,) of the convex hull conv G, of G, is smaller
than or equal to the area ./ (conv GH,) of the convex hull conv GH, of GH,, with equality
if and only if G, is a polygonal path inscribed a hemicircle (Fig. 3).
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Figure 3

Remark 1. In Theorem 1 the set G, of n segments is obviously a polygonally connected
subset of the Euclidean plane. However the converse is not true i.e. there are polygonally
connected arrangements of n segments in the plane which cannot be represented as
G,-sets. This shows the difference between Theorem 1 and our conjecture.

Theorem 2. Let G4, , be an arbitrary connected simple graph of d + 1 edges embedded
in the d-dimensional Euclidean space (d = 2) such that the edges are segments. If GSj, ,
is the star formed by the d + 1 segments of G4, , where the center of the star GS4, | is in
the interior or conv GS3, ; and is the center of the altitudes of the simplex the vertices of
which are the endpoints of GS4,, (Fig.4), then for the d-dimensional volumes of
conv G4, , and conv GS4, , we have the inequality

V(conv G4, ,) < V(convGS4, ,).

1
Remark 2. It is easy to see that the inequalities 7 (D) < 2—-L2 (I, & (convl) <
T

< 5o - I2(I") of the introduction are simple corollaries of Theorem 1. So also the well-
T
known isoperimetric property of the circles follows from Theorem 1.

Figure 4
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First let us see the proof of Theorem 1. It is an easy exercise to show that
& (conv G5) < o/ (conv GH ,). (1)

Let €, = {G,|G, is a connected simple graph of n edges embedded in the Euclidean plane
such that the edges are segments of the given n lengths}. Because of the theorem of
Weierstrass there exists a G¥* € €, such that ./ (conv G,) < &/ (conv G}) for any G,€%,,.
We are going to show that G¥ is a polygonal path inscribed a hemicircle.

Furtheron we suppose that n = 4 and because of (1) we may suppose the inequality

o (convG,_,) < o/ (convGH,_,) (2)

also. From those we prove that G* is a polygonal path inscribed a hemicircle, which then
proves Theorem 1.

Proposition 1. G* is a tree.

Proposition 2. If V is a vertex of degree one of the graph G¥, then V is a vertex of the
convex hull of G*.

The proofs of these two propositions are easy exercises which can be left to the reader.

Proposition 3. If V, and V, are two vertices of degree one of the graph G}, then they are
consecutive vertices (of conv G¥) on the boundary of conv G}.

Proof: Suppose on the contrary that V,, V, are two vertices of degree one of the graph
G* which are not consecutive vertices of conv G} on the boundary of conv G¥. This means
that there are vertices U{", U, UV, U{? of the convex hull of G* such that UV, V,, UP
is a triplet of consecutive vertices and also U{", V,, U{? is another triplet of consecutive
vertices of conv G} (Fig. 5).

Figure §
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Obviously the edge V; W, (V, W,) of G* is orthogonal to the line U U2 (ULY UP).
Without loss of generality we may suppose that the lengths of the segments U{! U{?),
UV U? satisfy the inequality UV U® < USH USY). Now let V, be the interior point of the
segment W, V] such that V, ¥/ = V; W, . In other words we put the segment V, W, in a new

position namely, in V, ¥V, which obviously yields a new graph G*' €%,. It is easy to see
that

o (conv GF') — o (conv G¥) =

VW, (U UP — U UP) 2 0. ©

1
2

But G}’ is a connected simple graph of (n — 1) edges in the Euclidean plane where the
edges are segments of the given (n — 1) lengths, since the degree of V, was one in G*.
Hence, because of (2), we have

o (conv G¥) < o/ (convGH, _,) 4

where GH,_, is the polygonal path formed by the (n — 1) segments of G¥, inscribed a
hemicircle such that the last segment is W, V| (Fig. 6)

Figure 6

Let V' be the other endpoint of the diameter of the hemicircle of GH,_,. Here
X ViW, V" =Zandso £ V{ V, V{" > 7 consequently we can rotate V, V| about the point

V, into the new position V, V| such that the arising polygonal path G}” € €, satisfies the
inequality

& (convGH,_,) < & (conv G}"). (5)

Thus on account of (3), (4), (5) we get that o/ (conv G¥) < o (conv G*") with G*, G¥" €&,
which is a contradiction. []

Proposition 4. The total number of the vertices of the graph G} the degree of which is
equal to one is two.

Proof: Because of the Proposition 3 the total number of the vertices of the graph G} the
degree of which is equal to one is at most three (and of course is at least two). Now
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Figure 7 Vq

suppose that G¥ possesses three vertices of degree one. On account of the Proposition 3
the convex hull of the graph G} will be the triangle A V| V, V; where V;, V,, Vj are the
vertices of degree one in G} (Fig. 7).

Because of the Proposition 1 and 2 the graph G* possesses one vertex V with degree three
and each vertex different from V,, V,, V;, V has degree two. Considering the path of the
graph G* from V to V(i = 1,2, 3) it has to be the segment V'V, otherwise we could increase
the area of the convex hull of G*. Also, the segment V'V, is perpendicular to the side T{Vk
of the triangle A V|V, V;({i,j,k} = {1,2,3}). Finally at least one of the segments
VV,, VV,, VV; consists of at least two edges of G} because n = 4 (Fig. 8). This clearly
yields a contradiction, namely it is enough to apply the method of Fig. 6 to the configura-
tion of Fig. 8. [

Now the rest of the proof of Theorem 1 is more or less a routine exercise. Namely,

Figure 8 V4
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Proposition 5. G} is a convex polygonal path of n segments.

Proof: From the Proposition 4 we get that G} has two vertices V; and V, with degree one
and all the other vertices have the degree two. In addition ¥, and V, are consecutive
vertices of conv G¥ on the boundary of conv G* (Proposition 3). We claim that

Gy =bd(convGy\] V1, V)l (6)

where bd(...) means the boundary of the corresponding set and ]..,..[ means the corre-
sponding open segment. If (6) were not true, then as the Fig. 9 shows a simple reflection
about a point or any other transformation which preserves the lengths of the edges of G*
and the connectivity of G could increase the area of the convex hull of G} which would
yield a contradiction. []

- eam wm e wwm em wem wm W -

1 v2.

Figure 9

Proposition 6. G* is a polygonal path of n segments of the given n lengths which is
inscribed a hemicircle.

Proof: Using the notations of the previous proof it is enough to show that if X is an
arbitrary vertex of Gy different from V;, V,, then XV, XV, =7. Because of the
Proposition 5 the path from V, to X of G¥ is a convex polygonal path and also the path
from X to V, is a convex polygonal path. If ¥ V; XV, # 7, then a rotation about X can
move the path from ¥V, to X into a new position when the area of the convex hull of the

new G} will be larger than in the starting case which is a contradiction (see Fig. 10). [

This completes the proof of Theorem 1.

Now let us turn to the proof of Theorem 2. We sketch the main steps only without going
into details.

First of all it is not hard to show that GS7,, is uniquely determined up to congruent
transformations if we know the lengths of the d + 1 segments. On the other hand let
€., =1{G,,1G3,, is a connected simple graph of d + 1 edges imbedded in the d-
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Figure 10

dimensional Euclidean space such that the edges are segments of the given d + 1 lengths}.
Because of the theorem of Weierstrass there exists a G¥¢ , e €4, , such that V (conv G4, ) £
< V(conv G¥{,) for any G%,,€%4,,. We claim that V(conv G* ) = V(GS:,,). We
prove this with the help of the following transformation which transforms G¥¢, into a
graph of €4, | which is a star of (d + 1) segments of the given d + 1 lengths and the volume
of the convex hull of which is equal to V(conv G*? ). From this it follows immediately
that the center of the star is in the interior of the convex hull of the star and so it must
be the center of the altitudes of the simplex whose vertices are the endpoints of the star.
Finally because of our first observation we get that the star in question is congruent to
GS4,, and so V(conv G¥¢,) = V(conv GS4, ,) really, which yields Theorem 2.

The promised transformation is the composition of finite many transformations which
increase the maximal degree of the graphs in question by one. Now let us see how it
happens. We have a graph of €4, , say G*¥¢,, the volume of the convex hull of which is
maximal in €4, . Suppose that V is a vertex of the maximal degree in G*¢,. We may
suppose that there exists an edge U, U, of G*¢ , whose endpoints U, , , U, are different from
V, otherwise we are done. Also we may suppose that G = G¥?,\U, U, is a connected
simple graph of d edges imbedded in the d-dimensional Euclidean space (d = 2) such
that the edges are segments ie. we may suppose that the degree of U, is one. If
dim (conv G) £d — 1, then we translate the edge U, U, by the vector Wto the vertex
V, which obviously yields a graph G* of €4, , the maximal degree of which is larger than
the maximal degree of G¥¢, by one and finally V(convG*)= V(convG*¢,)). If
dim (conv G) = d, then conv G is a d-dimensional simplex because it is the convex hull of
d (line) segments forming a connected simple graph G of d edges in the d-dimensional
Euclidean space (d = 2). Now V is a vertex of conv G Consider the parallel illumination
of the simplex conv G determined by the direction U U, (Fig. 11).

Let V, be the facet of conv G opposite to V. If the facet V; is 111um1nated (i.e. for any
interior point of V, there exists a ray of the illumination parallel to U, U2 which intersects
V; at the given interior point going into the interior of conv G), then we translate the edge
U1 U, of the graph G*?, by the vector Wto the vertex V otherwise we translate U, U,
by the vector ZJ_ZT/’to the vertex V. Let VV* be the new edge (segment) at the vertex V
in both cases forming a new graph G* of €3, , together with G. Finally let us denote the
orthogonal projection of convG onto the hyperplane H by P(convG) where H is a
hyperplane orthogonal to the line U, U,. It is not hard to show that
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1 _
V (conv G*) = V (conv G) + F - [P(convG)]: VI*
1
= V(conv G) + y - &/ [P(conv G)] - U, U,

where ./(...) means the (d — 1)-dimensional volume of the corresponding set) and
1 S
V (conv G*? )< V(conv G) + 3 s [P(conv G)]- U, U,. Hence V (conv G*)=V (conv G*{

where G* is a graph of 9., the maximal degree of which is larger than the maximal
degree of G¥¢, by one.
This completes the proof of Theorem 2.

A. Bezdek, Math. Inst. of the Hungarian Acad. of Sciences, Budapest
K. Bezdek, E6tvos Lorand University, Department of Geometry, Budapest
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