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Die Fredholmsche Alternative und Polynome

In dieser Abhandlung wird gezeigt, wie man die Fredholmsche Alternative m ihrer
einfachsten Form fur Beweise algebraischer Satze uber Polynome und rationale Funktionen

verwenden kann Da der algebraische Aufwand dabei minimal ist, erscheint dieser

Zugang besonders geeignet im Rahmen einführender Vorlesungen

Im folgenden betrachten wir Polynome mit komplexen oder reellen Koeffizienten Mit
deg P bezeichnen wird den Grad des Polynoms P Zwei Polynome P, Q + 0 heissen

P p
teilerfremd, wenn es keine Polynome/?, q + 0 mit degp < degP, deg q < deg Q und — -
gibt ß a

In der Algebra wird bewiesen, dass es zu zwei teilerfremden Polynomen P, Q zwei
Polynome A, B mit deg A < deg P und deg B < deg Q und

AQ + BP=1 (1)

gibt Wir wollen fur diesen «Hauptsatz» einen elementaren Beweis vorstellen, der als
wesentliches Hilfsmittel die Fredholmsche Alternative fur lineare Gleichungssysteme der
Form

Mc d (2)

mit quadratischer Matrix M benutzt Die Alternative besagt bekanntlich, dass (2) entweder

im Falle d 0 nichttriviale Losungen oder fur jedes d genau eine Losung c hat

Hauptsatz für Polynome. Die Polynome P,Q +0 seien teilerfremd, undfür das Polynom
R gelte deg R < deg P + deg Q Dann gibt es zwei eindeutig bestimmte Polynome A, B mit
deg A < deg P, deg B < deg Q und

AQ + BP R (3)

Bemerkung. Der Spezialfall R 1 ergibt gerade (1)

Der Zusammenhang zwischen Polynomgleichungen und linearen Gleichungssystemen
wird zunächst durch ein Beispiel erläutert

Beispiel. Es seien P(s) s3 — 1, Q(s) s4 + 1 und R(s) s5 — 1 Verwendet man die
Ansätze A(s) a0 + axs + a2s2 und B(s) b0 + bxs + b2s2 + b3s3, so erhalt man
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durch Koeffizientenvergleich in (3) die sieben linearen Gleichungen

fl2 + ^3==^ ax+b2 \9 ao + bx=0,

dq — °z= 0> ci2 — b2=0, ax—bx=0, a0 — b0 — 1

mit sieben Unbekannten. Es folgt A (s) s — 1 und B (s) s. Die Gleichung (3) lautet hier
also

(s-l)(s4 + l) + s(s3-l) s5-l.

Beweis des Hauptsatzes. Das durch Koeffizientenvergleich aus (3) entstehende lineare
Gleichungssystem mit deg P + deg Q Unbekannten ist genau dann homogen bzw.

inhomogen, wenn R 0 bzw. R + 0 ist. Da P und Q teilerfremd sind, besitzt die Gleichung
P A

AQ + BP 0 nur die Lösung A B 0, anderfalls erhielte man — mit
ß B

deg A < deg P und deg B < deg Q. Ist R + 0, so liefert die Fredholmsche Alternative
eindeutig die Koeffizienten von A und B.

Korollar. Die Determinante des im Beweis auftretenden linearen Gleichungssystems, die

sog. Resultante von P und Q, verschwindet nicht, wenn P, Q + 0 teilerfremd sind.

Der obige Hauptsatz für Polynome findet eine wichtige Anwendung im folgenden

Satz über die Partialbruchzerlegung. Das Polynom Q + 0 besitze eine Produktdarstellung
der Form

Q QiQ2,.,Qn> (4)

und dabei seien Qjf Qk teilerfremdfürj + k. Ist P ein Polynom mit deg P < deg Q, dann gibt
es eindeutig bestimmte Polynome Px,..., Pn mit deg ij < deg Qjfürj 1, n derart, daß

ß öl Ö2 ß.

Beweis. Ist n 2, dann gibt es nach dem obigen Hauptsatz zwei eindeutig bestimmte
Polynome A Px und B P2 mit degPx < degß!, degP2 < degß2 und

P PiQ2 + P2Qi-

Division durch ß ergibt dann (5).

Der Rest folgt durch vollständige Induktion nach n: Ist ß (Qx,..., ß„_ x) Qn, so gibt es

wiederum nach dem Hauptsatz zwei eindeutig bestimmte Polynome A und B — Pn mit
deg A < deg(Qx,..., Qn_x), degPn < degQn und

P AQn + Pn(QX9...,Qn_x).
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Division durch Q liefert

P= * Pn

Q ßi, ,ß„-i QH9

und der Rest folgt mit Hilfe der Induktionsvoraussetzung

A Pi P„_i

ßi, ,0.-1 ßi ß„-i

a
Ist etwa Qx s — sx in (4), so entspricht diesem Linearfaktor der Partialbruch mit
einer eindeutig bestimmten Konstanten a in (5) s — sx

Nun sei Qx(s) (s — sx)m mit m > 2 Wenn wir das Polynom Px mit degPx < m in der
Form

A Am + «m-1 (5 " Si) + + ax (S - S,)*"'1

entwickeln, erhalten wir schließlich die bekannte Darstellung

Pl
___

am "m-1 __!i_ f6v
(s-Slr (s-sxr (s-s.r-1 s-sx

K)

Wir wollen noch zeigen, wie man die Fredholmsche Alternative fur den Beweis des

Divisionsalgonthmus heranziehen kann

Satz über die Division mit Rest. Zu zwei Polynomen P und Q + 0 gibt es genau zwei
Polynome M und R mit deg R < deg Q derart, daß

P MQ + R (7)

ist

Beweis. Ist deg P < deg Q, so gibt es nach dem Hauptsatz genau zwei Polynome A M
und B R mit degR < degß und degM < deg 1 0, so daß MQ + R 1 P gilt In
diesem Fall ist also M 0 und R P
Ist dagegen deg P > deg ß, so erhalt man durch Koeffizientenvergleich in (7) ein lineares

Gleichungssystem mit deg Q unbekannten Koeffizienten von R und 1 + deg P — deg Q

unbekannten Koeffizienten von M, also mit insgesamt 1 + deg P Unbekannten Die
Anzahl der Gleichungen ist auch 1 + deg P, denn jedem Koeffizienten von P entspricht
eine Gleichung Nun besitzt die homogene Gleichung MQ + R — 0 nur die Losung
M R 0, wäre namhch M + 0, so erhielte man den Widerspruch

deg Q deg ß 4- deg M deg R < deg Q

Da also das entspechende homogene lineare Gleichungssystem nur die Nullösung besitzt,
liefert die Fredholmsche Alternative eindeutig die Koeffizienten von M und R
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Der Satz über die Division mit Rest läßt sich auf die Partialbruchzerlegung anwenden.
Hat man in der Produktdarstellung (4) quadratische Faktoren q (s) s2 + ß s + y und ist

Px
dort etwa Qx qm, dann läßt sich der zugehörige Partialbruch — in (5) mit degPx <2m
durch Division mit Rest in die bekannte Form ^

Px(s) _bms + cm bm_xs + cm_x bxs + cx
+ —/_/_._«-_ + • • • + 77T— \P)

(q(sT (q(s))m (q(s))m~1 q(s)

mit eindeutig bestimmten Konstanten bx,cx, ...,bm,cm bringen. Das Verfahren wird am
folgenden Beispiel erläutert.

Beispiel. Ist etwa Px(s) 2s5 — s* + 4s3 + 1 und Qx(s) (s2 + l)3, so führt wiederholte
Division durch s2 + 1 auf

2s5-s* + 4s3 + l (2s3 - s2 + 2s + l)(s2 + 1) - 2s,

2s3-s2 + 2s+l=(2s- l)(s2 + 1) + 2,

und damit lautet die Partialbruchzerlegung (8) in diesem Fall

2s5-s4 + 4s3 + 1

_
2s 2 2s-l

(s2 + l)3 " " (s2 + l)3
+

(s2 + 1)2
+

s2 + l'
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On a discrete Dido-type question

We start with the following well-known fact [1]. If D is a simply connected domain ofthe
Euchdean plane with area s/(D) whose boundary is divided into a segment and a simple

curve r of length L (F), then $4 (D) • L2 (T) with equality if and only if D is a
2'7C

hemicircle. In other words if we have a simple curve T of given length L(T) in the
Euchdean plane, then the area of its convex hüll is maximal ifand only if T is a hemicircle

1

i.e. «a/ (conv F) g • L2 (T). Reading these sentences we immediately thought of the
2-71

following discrete version of the above problem. We call it a discrete Dido-type question
since it is related to the well-known Dido-problem of Hajos ([3], [4], [5]) and also it is

related to the problem of [2], but we believe it to be a new question.
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