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Die Fredholmsche Alternative und Polynome

In dieser Abhandlung wird gezeigt, wie man die Fredholmsche Alternative in ihrer
einfachsten Form fiir Beweise algebraischer Sitze iiber Polynome und rationale Funktio-
nen verwenden kann. Da der algebraische Aufwand dabei minimal ist, erscheint dieser
Zugang besonders geeignet im Rahmen einfithrender Vorlesungen.

Im folgenden betrachten wir Polynome mit komplexen oder reellen Koeffizienten. Mit
deg P bezeichnen wird den Grad des Polynoms P. Zwei Polynome P,Q =+ 0 heissen

P
teilerfremd, wenn es keine Polynome p, g + 0 mit deg p < deg P, degq < deg Q und a = £
gibt. q

In der Algebra wird bewiesen, dass es zu zwei teilerfremden Polynomen P, (Q zwei
Polynome A4, B mit deg A < deg P und deg B < deg Q und

AQ + BP =1 (1)

gibt. Wir wollen fiir diesen «Hauptsatz» einen elementaren Beweis vorstellen, der als
wesentliches Hilfsmittel die Fredholmsche Alternative fiir lineare Gleichungssysteme der
Form

Mc=d Q)

mit quadratischer Matrix M benutzt. Die Alternative besagt bekanntlich, dass (2) entwe-
der im Falle d = 0 nichttriviale Losungen oder fiir jedes d genau eine Losung ¢ hat.

Hauptsatz fiir Polynome. Die Polynome P,Q #0 seien teilerfremd, und fiir das Polynom
R gelte deg R < deg P + deg Q. Dann gibt es zwei eindeutig bestimmte Polynome A, B mit
deg A < deg P, deg B < deg Q und

AQ + BP=R. ®3)
Bemerkung. Der Spezialfall R = 1 ergibt gerade (1).

Der Zusammenhang zwischen Polynomgleichungen und linearen Gleichungssystemen
wird zundchst durch ein Beispiel erlautert.

Beispiel. Es seien P(s) =s*> —1, Q(s) =s* +1 und R(s) = s> — 1. Verwendet man die
Ansitze A(s)=ay+a,;s+a,s*> und B(s)=by+ b;s + b,s* + b;s>, so erhdlt man
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durch Koeffizientenvergleich in (3) die sieben linearen Gleichungen

a,+by=0, a;,+b,=1, a,+b, =0,

bo—b3;=0, a,—b,=0, a;,—b, =0, ay,—by=—1

mit sieben Unbekannten. Es folgt A(s) =s — 1 und B(s) = s. Die Gleichung (3) lautet hier
also

=D +1)+s(>—1)=s5—1.

Beweis des Hauptsatzes. Das durch Koeffizientenvergleich aus (3) entstehende lineare
Gleichungssystem mit deg P + deg Q Unbekannten ist genau dann homogen bzw. inho-

mogen, wenn R = 0 bzw. R # 0 ist. Da P und Q teilerfremd sind, besitzt die Gleichung

P A
AQ + BP =0 nur die Losung 4 =B =0, anderfalls erhielte man a = — 5 mit

deg A <deg P und degB <degQ. Ist R +£0, so liefert die Fredholmsche Alternative
eindeutig die Koeffizienten von 4 und B. O

Korollar. Die Determinante des im Beweis auftretenden linearen Gleichungssystems, die
sog. Resultante von P und Q, verschwindet nicht, wenn P,Q =+ 0 teilerfremd sind.

Der obige Hauptsatz fiir Polynome findet eine wichtige Anwendung im folgenden

Satz iiber die Partialbruchzerlegung. Das Polynom Q =+ 0 besitze eine Produktdarstellung
der Form

Q=Q1Q2""’Qn’ 4)

und dabei seien Q;, Q, teilerfremd fiir j + k. Ist P ein Polynom mit deg P < deg Q, dann gibt
es eindeutig bestimmte Polynome P,, ..., P, mitdeg P, < deg Q; fiirj=1, ..., nderart, dafs

P P P P
=y, n

L+ —. 5
0-o,to, T, G)

Beweis. Ist n = 2, dann gibt es nach dem obigen Hauptsatz zwei eindeutig bestimmte
Polynome A = P, und B = P, mit deg P, < degQ,, deg P, <degQ, und

P=PQ,+P0Q,.
Division durch Q ergibt dann (5).
Der Rest folgt durch vollstindige Induktion nach n: Ist Q = (Q,,...,Q,_1) @,, so gibt es

wiederum nach dem Hauptsatz zwei eindeutig bestimmte Polynome 4 und B = P, mit
deg 4 <deg(Q,,...,Q,-,), deg b, < degQ, und

PzAQn+Pn(Q1""’ Qn-l)'
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Division durch Q liefert

P A P

n

07 0.0, 0

und der Rest folgt mit Hilfe der Induktionsvoraussetzung

4 S S O
Ql""’Qn——l QI Qn—l.
Ist etwa Q, = s — s, in (4), so entspricht diesem Linearfaktor der Partialbruch mit

einer eindeutig bestimmten Konstanten a in (5). §=5
Nun sei Q, (s) = (s — s;)™ mit m > 2. Wenn wir das Polynom P, mit deg P, < m in der
Form

P=a,+a, (s—s)+...+a;(s—s)" !
entwickeln, erhalten wir schlieBlich die bekannte Darstellung

P, a a a
1 m m-—1 1
— +

Gos Gos)  Gosyt U s

(6)

Wir wollen noch zeigen, wie man die Fredholmsche Alternative fiir den Beweis des
Divisionsalgorithmus heranziehen kann.

Satz iiber die Division mit Rest. Zu zwei Polynomen P und Q + 0 gibt es genau zwei
Polynome M und R mit deg R < deg Q derart, daf

P=MQ +R 0

ist.

Beweis. Ist deg P < deg Q, so gibt es nach dem Hauptsatz genau zwei Polynome 4 = M
und B =R mit degR <degQ und degM < degl1 =0, so daB MQ + R-1 =P gilt. In
diesem Fall ist also M =0 und R = P.

Ist dagegen deg P > deg Q, so erhilt man durch Koeffizientenvergleich in (7) ein lineares
Gleichungssystem mit deg Q unbekannten Koeffizienten von R und 1 + deg P — degQ
unbekannten Koeffizienten von M, also mit insgesamt 1 + deg P Unbekannten. Die
Anzahl der Gleichungen ist auch 1 + deg P, denn jedem Koeffizienten von P entspricht
eine Gleichung. Nun besitzt die homogene Gleichung MQ + R =0 nur die Ldsung
M = R = 0; wire nimlich M # 0, so erhielte man den Widerspruch

degQ <degQ + degM =degR <degQ.

Da also das entspechende homogene lineare Gleichungssystem nur die Nullosung besitzt,
liefert die Fredholmsche Alternative eindeutig die Koeffizienten von M und R. O
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Der Satz iiber die Division mit Rest 1Bt sich auf die Partialbruchzerlegung anwenden.
Hat man in der Produktdarstellung (4) quadratische Faktoren g (s) = s> + fs + y und ist

P,
dort etwa Q, = q™, dann 148t sich der zugehorige Partialbruch ——; in(S)mitdegP, <2m

durch Division mit Rest in die bekannte Form q
Pl(s)mzbms+'fm b'””lstf’;‘“l.{_____‘_bls_*_cl ®)
(q(s) (q(s) (q(9) q(s)

mit eindeutig bestimmten Konstanten b,,c,, ..., b, c,, bringen. Das Verfahren wird am
folgenden Beispiel erldutert.

Beispiel. Ist etwa P, (s) = 25> — s* + 453+ 1 und Q, (s) = (s* + 1)3, so fiihrt wiederholte
Division durch s? + 1 auf

28 —s* +4s2 +1 =25 =5+ 25+ 1)(s> + 1) = 25,
252 —s2 4+ 2s+1=Q2s—=1)(s2+1)+2,
und damit lautet die Partialbruchzerlegung (8) in diesem Fall

2s5—s4+4s3+1_ 2s N 2 +2s——1
(s +1)° T (sE+1)? P41 sP+t
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On a discrete Dido-type question

We start with the following well-known fact [1]. If D is a simply connected domain of the
Euclidean plane with area ./ (D) whose boundary is divided into a segment and a simple

1
curve I' of length L(I'), then &/ (D) < T - I2(I') with equality if and only if D is a
T

hemicircle. In other words if we have a simple curve I' of given length L(I') in the
Euclidean plane, then the area of its convex hull is maximal if and only if I' is a hemicircle

ie. o (convl) < 7on -I?(I'). Reading these sentences we immediately thought of the
‘T

following discrete version of the above problem. We call it a discrete Dido-type question
since it is related to the well-known Dido-problem of Hajos ([3], [4], [S]) and also it is
related to the problem of [2], but we believe it to be a new question.
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