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A Desarguesian dual for Nagel’s middlespoint

1. In a paper published in 1836, C. H. Nagel [4] defines the “middlespoint” (Mittenpunkt)
of a given triangle ABC in the following manner:

Let S,, Sy, Sc be the midpoints of BC, CA, AB respectively and 1,, I, I_ the centres of the
excircles, then the lines S,1,, Sgl,, ScI, concur at M, the middlespoint of ABC,

see also [1]. The name is probably derived from the fact that the point is constructed using
“middles”, namely, centres of circles and midpoints of line segments. In this paper, we
derive a dual (line) for this remarkable, but seemingly little known, point and show how
this new line relates to some known geometry of the triangle.

2. Desargues’s two-triangle theorem in the plane states that if triangles ABC and A4, B, C,
are perspective from a point L, they are perspective from a line [, i.e. if AA, " BB, " CC,
=L, then (ABnA,B,)U(BCNnB,C,)u(CAnC,;A,) =l Clearly, the converse of this
theorem is also its dual, hence, for purposes of this paper, we refer to L and [ as
“Desarguesian duals”. Also, we will have occasion to make reference to the special case
when the triangle 4,B,C, is inscribed in ABC, i.e. A,is on BC, etc. In this instance, L is
called the trilinear pole of I and, dually, [ is the trilinear polar of L, see [2].

3. In order to facilitate the arguments, we shall use a system of homogeneous coordinates
called “trilinear” or “normal”. In order to avoid a possible confusion with trilinear poles
and polars, we shall use the term “normal” throughout. In this system, the coordinates
(x,y,z) of a point L in the plane of ABC are proportional to the signed distances d,, d,,
d, of L from the sides of the triangle of reference ABC, where, obviously, 4 =(1,0,0),
B=(0,1,0), C =(0,0,1). The distance d,, for example, is positive if L and the unit point
I =(1,1,1), the incentre, are on the same side of a = BC and negative otherwise. For
instance, the excentre I, of the excircle opposite vertex A has coordinates (—1,1,1), or
its projective equivalent, (1, —1, —1).

We now derive the normal line coordinates of [, the trilinear polar of L, that is, if a line
t has equation ux + vy +wz =0 then t = [u, v, w] is its normal representation. Also, for the
remainder of the paper, we shall denote 4, by A,, etc., thus A; =(0, y, z), B, =(x,0, z),
C.=(x,5,0) and, consequently, A;B;=[yz, xz, —xy] = —1)2, %, —%], xyz #0. Now
Ci*"1= ABNA,; B, =(x, —,0) and, similarly B} =(—x,0,z), A;.=(0, y, — z); hence the
coordinates of | = A} B C}, readily follow. Since this result does not seem to appear in the
available literature, we state it as a proposition.

Proposition 1. If a point L= (x, y, z) is in the plane of, but not incident with, a given

. ) - ) 111
triangle of reference ABC then, [, its trilinear polar, has coordinates [- s = —].
X'y z

4. The coordinates of the middlespoint M are also readily obtained. The coordinates

! 1 1 where a, 5, y are
sina’ sin 8’ siny /)’ 84 &

of the centroid S are easily seen to be of the form (
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the measures of the vertex angles at 4, B, C respectively, however, since a = 2 R sina,
111

abc)
Now IS,=[b—c),b,—c]l, [,Sg=[—a,(c—a),c]l, I.Sc=[a,—b,(a—D)], consequently,
M =(b+c—a,c+a—b,a+b—c). Again, we state this result in the form of a proposition.

where R is the circumradius of ABC, it is more convenient to write S =

Proposition 2. The normal coordinates of the middlespoint M of a given triangle ABC
are given by M =(s—a,s—b,s—c), where s = 2_‘*‘_3_‘_‘2_

5. Since the triangles 1,1zl and S,SpS; are perspective from the middlespoint M, they are,
by Desargues’s theorem, perspective from a line m, the Desarguesian dual of M, which
we shall call the “middlesline” (mittenlinie) of ABC. Following the procedures above, it
is an elementary exercise to show that the coordinates of m are [a(s—a), b(s—b), c(s—¢)],
the details of which we leave as an exercise for the reader. We now state and prove a
related result.

Proposition 3. The middlesline is the trilinear polar of the Gergonne point G of the given

triangle ABC.

Proof: Since G,, Gz, G are the points of contact of the incircle with the sides of ABC,

BG,=s—b and G,C=s5—c, hence G,=(0, c(s—c), b(s—b)) with similiar expressions for
1 1 1

a(s—a)’ b(s—by c(s—c)) and by

proposition 1, its trilinear polar is [a(s—a), b(s—b), c(s —c)] = m as claimed.

G, Gc. It now follows that the coordinates of G are
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NOTE

[1*] The “prime” notation is particularly useful here since C, and C are related by the harmonic conjugacy
involution, see [2].
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