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Proof By Theorem 1 and Lemma 4:
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Kleine Mitteilungen

Zu einer Aufgabe der Kombinatorik

iJ;/jelN,/ce]No ]Nu{0} sei die Anzahl der Möglichkeiten, k (nicht zu unterscheidende)

Dinge auf p (zu unterscheidende) Personen aufzuteilen. Das Resultat

p + k-1
k<-( i ); />eN,/ceN0 (1)

wird im allgemeinen durch vollständige Induktion gewonnen, wobei

Al-' + l-1). AI: '"*'-'
^P 2
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als Induktionsanfang genommen und, in wenig überzeugender Weise, zur Gewinnung der
Induktionshypothese herangezogen wird [1*] Hier wird ein induktionsfreier Beweis von
(1) gegeben, der die Rekursionsformel

4 4_1 + 4"1 (2)

benutzt

Beweis der Rekursionsformel: Akp_x zahlt genau alle Möglichkeiten, k Dmge auf die p
Personen 1,2, p aufzuteilen, bei denen p leer ausgeht Die restlichen Möglichkeiten
werden gerade von Ak~l gezahlt wie man erkennt, wenn man jeweils ein p zugeteiltes
Ding weglasst
Nach obigem Beweis gilt (2) fur p > 1, k > 1 Man rechnet leicht nach, dass (2) bei

Erweiterung des Definitionsbereiches der Anzahlen Akp durch

4 0, /^N v Je$N0, k,peZ

nur fur p 1, k= 0 verletzt ist Hier gilt

A^l+O + O^AZ + A;1 (I)

Bildet man ausgehend von Ak das folgende Anzahldreieck

A.
Ak AM

k-1 a k-2al m;;. a;

AP-3 ,jAp< JA p-i Ap\ <#- ¦%. <&- -^ y
Figur 1

so stellt die Rekursionsformel (2) sicher, dass die Zellensummen dieses Anzahldreiecks
alle gleich, somit gleich Ak smd Die Ähnlichkeit von (2) mit der dem Aufbau des

Pascal-Dreiecks zugrundeliegenden Rekursionsformel
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bewirkt, daß die im Anzahldreieck auftretenden Koeffizienten für sich gerade das Pascal-
Dreieck bilden, in seiner (p + v)-ten Zeile und v-ten Schrägzeile [2*] somit der Term

TW-i ra

steht. In der (k + p + l)-ten Zeile des Anzahldreiecks finden sich nun nur noch - nach der
erweiterten Definition - verschwindende Anzahlen, dementsprechend verschwindet auch
diese Zeilensumme. Der Anfangsbetrag Akp muß also unterwegs verlorengegangen sein.
Dies konnte nur an der einen Stelle geschehen, an der die Rekursionsformel verletzt ist.

Aufgrund von (3) und (2') geht an dieser Stelle gerade der Beitrag

k+P-1\4k-k _(k+p-l\__fp + k-l
P-l )A>-»-»-\ p-1 )-{ k

verloren, womit (1) bewiesen ist.
K. Bürde, TU Braunschweig
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ANMERKUNGEN

[1*] Siehe etwa [2], Nr 23 Akp ist die dortige «Anzahl der Kombinationen Ä>ter Ordnung von p Dingen mit
unbeschrankter Wiederholung und ohne Berücksichtigung der Anordnung» In der heute üblichen Terminologie

ist Akp die Anzahl der isotonen Worter der Lange k

a«.v >a.*' ij ij+i fur j 1>2' »fc-1

uber einem Alphabet vom Umfang/? ol1,a2, a_ Em solches Wort, in dem der Buchstabe ay genau i^mal
auftritt, entspricht dabei der Aufteilung, bei der diej-te Person v. der aufzuteilenden Dinge erhalt Siehe hierzu

etwa [1]

[2*] Die Numenerung beginnt wie beim Pascal-Dreieck jeweils mit Null
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