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Number of primes given by
an*+bn*+cn+d for

No a b c d n<i00 n<200 n<300 n<d400 n<S00
1) 1 —220 16119 —392723 75 134 179 219 261

2) 1 —-199 13190 —290869 75 124 163 206 235

(3) 1 —160 8547 —142811 75 130 179 221 264

4 1 —159 8420 —148153 76 124 164 203 238
(5) 1 —151 7610 —129097 76 125 168 204 245

(6) 1 —150 7493 —124277 76 128 170 217 250
W) 1 —137 6270 —95203 75 121 168 197 233
8) 1 —125 5196 —-73291 79 130 174 212 254

9) | —-119 4718 —-71741 75 118 158 190 224
(10) 1 —114 4343 —54829 76 125 171 200 232
(11) 1 —111 4100 —49367 76 119 150 199 246
(12) 1 -97 3126 —32603 75 115 161 195 235
(13) 1 —-96 3059 —32563 75 127 162 192 225
(14) 1 ~82 2237 —20407 75 112 149 183 218
(15) 2 —489 39847 —1084 553 75 134 176 222 267
(16) 2 —-372 23050 —476027 75 128 174 211 239
17 2 —292 14202 —231551 76 124 160 206 252
(18) 2 —289 13917 —221891 75 124 172 210 247
(19) 2 —281 13157 —204 487 78 129 169 214 250
(20) 2 —280 13072 —203857 76 123 168 204 240
(21) 2 —-199 6595 —79 657 79 125 174 217 257

P. Goetgheluck, Université de Paris-sud
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A remark on the gamma function

According to Problem 188, Part II of G. Pdlya and G. Szegd [2] for each integrable
function f(x) on 0 < x <1 we have:

lim —1-— :V_: f(5>~if(x)dx
noo @M K=1 n _0 ’
(k,m)=1
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or

n k 1
z f(—) ~@m) [f(x)dx (n—o0),
k=1 n 0
(k,n)=1
where ¢ (n) denotes Euler’s totient function.
Let I'(x) = j e 't*~1dt be the Euler gamma function. Then using the above mentioned

result for f (x) = log I' (x) and taking into account that jlog I'(x) dx =log./2n (Raabe’s
integral; [3]) we obtain

Z 10g1"< ) (n)log\/ﬂ

(k n)=1
or

logP(n)~<p(n)logm, where P(n)= ]2[ F(—ﬁ—)
k=1

tk,m)=1

The aim of this note is to give an explicit formula for P (n) and to establish an asymptotic
formula with remainder term for the summatory function of log P (n).
We shall use the following results:

Lemma 1 ([3)).

K\ @mn-vr
(52
n

Lemma 2. (A. Hurwitz, see Problem 35, Part VIII of [2])
Suppose y (x) is an arbitrary function defined for 0 < x < 1.

n k n k
If f(n)= 'El y/(;l—) and g(n)-:-k‘i:ly/(;), then f(n)= Eu(d) g( ) u denoting the
(k,n)=1

Mébius function.

Lemma 3.

If F(n)= klill y;*(—:—), G(n)= ]‘[w (k> and y*(x) >0 for every x, 0<x =<1, then

(k,n)=1

F(n) = Z[G(d)l"(%).

din
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Proof: Apply Lemma 2 for f=1ogF, g=1logG, y =logy*.

Theorem 1.

For n>1 we have

Pn)= Qme™2  (2m)e™2) /p, for n=p"
CexpA(m)2 @™, for n#pm

where A(n) is von Mangoldt’s arithmetic function.

Proof: Using Lemma 1 und Lemma 3 one obtains successively:

P(n) =TI [(—-—2“)\21”2]”(%)=(2n)%Rd"(%)“%"}':“”G)/\/ﬁ(?),

din

where

S du (g-) —pm); 3 u(g—) —0 (n>1); and h(n) snd”@.

din din din

Here

logh(n)=Y ”(’2) logd = A(n),

d|n

cf. [1], and the proof is complete.
Lemma 4 (cf. [1]).

Yom= —3—2x2 + O(x log x),

n<x /4

3 Aln) =0 (x).
Theorem 2.
3log 2
Y log P(n) = Oiz T x? + 0 (xlogx).

n<x 2

75
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Proof: By Theorem 1 and Lemma 4:

Exlog P(n) = Ex[go—;ﬂ log2n—14 (n):] =
log 2
= T 00— T 0=

log 2 3
= ng n(;t-ix2+0(xlogx))—%0(x)=

_3log2m

52 x% + O (xlogx).

The authors wish to thank the referee for valuable suggestions.
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Kleine Mitteilungen

Zu einer Aufgabe der Kombinatorik

Al;peN, kelN, =N U {0} sei die Anzahl der Moglichkeiten, k (nicht zu unterschei-
dende) Dinge auf p (zu unterscheidende) Personen aufzuteilen. Das Resultat

A;=(”+’;"1); peN, keN, (1)

wird im allgemeinen durch vollstédndige Induktion gewonnen, wobei

2—1 3—-1
A§‘<p+2 ) Ai:(ﬂz )
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