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also modulo 7 reduziert = 0, betrigt. Es bleiben die Terme lings A, A; (mit dem

Diederwinkel 27 — o und der Kantenlénge | = | 1/zdz zwischen den gelegten Horo-

2sin a

sphiren), und lings A, 4, (mit dem Diederwinkel o und der Lénge | 1/z dz ausserhalb der
1

Horosphéren). Die elementare Ermittlung der Integrale fiihrt auf

Y (L() = (logu —log|2sina)) ® (F — o) + (logu) ® «,

also nach Reduzierung mod ;7 und Addition auf

Y(L(x)) =log|2sina|@a, w.z.b.w.

Hans E. Debrunner, Math. Institut, Universitdt Bern
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On cubic polynomials giving many primes

1. Introduction

In the following «prime» means positive or negative prime, that is an integer of the
sequence ... —7, —5, —3, —2,2,3,5,7,11...
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The question of finding quadratic polynomials giving many primes has been widely
investigated (see [2, p. 115-117] and [4, p. 141-143]) and we can cite for example
2n? — 199 (Karst, 1973, see [3]) giving 87 primes for n =0, 1,...,99 and n? 4+ n + 41 (Euler,
1772) giving 86 primes in the same range.

The purpose of this paper is to exhibit some polynomials an®+bn? 4 cn+d giving
many primes and to explain the way they were discovered. In the mathematical literature
we found only one result about this subject in [1, p. 420]: «Escott found that x3 + x2 + 17
is a prime for —14, —13,..., + 10» (In fact this is not true since making x = — 3 yields the
number —1).

Arbitrarily we shall say that

«p(n)=an®+bn?+cn+d gives many primes»
if and only if:

Card {n€[0,1,2,...,99] such that p(n) is prime} >75.

2. Method of computation

All calculations were performed with a micro-computer, using PASCAL and assembly
language.

First step
We determine all polynomials p(n) = an?® + bn? + cn + d satisfying:

1) a=1 or a=2
@@ —-1<b<tl if a=1{;
—-2<b<3 if a=2
(1) |c| <15
(iv) p(n)£0(modm) (m=2,3,5 7, neNlN).
(v) |d]<10000.
(vi) Card {ne[0,1,...,99] such that p(n) is prime} > 60.

Comments

1) Condition (ii) is not a real restriction since replacing n by n + 1 transforms p(n) into
an*+(b+3an*+(c+2b+3a)n+(d+a+b+c) showing that b can be reduced
mod 3 a.

2) Without condition (iv) we should have 5,219,739 polynomials to examine, that is
521,973,900 primality tests to perform. With this condition the amount of computation
is reduced by a factor 40 and the percentage of interesting polynomials lost is very low.
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Practically, for given a, b, and ¢, to get de][0,...,209] (210=2-3-5-7) such that
an®+bn?>+cn+d is never divisible by 2, 3, 5 or 7 we run the following algorithm:

For p=2,3,5and 7 do
for n=0top—1 do
for d=0top—1 do
if (an®*+bn*+cn+d)modp=0
then for j =d to 209 step p do suppress j.

The convenient values of d (mod 210) are the remaining j € [0, ..., 209].

Example: For a=2, b=1 and ¢ = —7, we have only to consider d =41, 107, 167, 191
(mod 210).

Second step
For every polynomial provided by step 1:

e We search in the interval [—100,...,100] a sequence of 100 consecutive integers j,
j+1,...,j+99 satisfying.
Card {ne[j,j+1,...,j+ 99] such that p(n) is prime} is maximum.

e If the maximum is greater than or equal to 75, changing n into n +j in p(n) yields a
new polynomial giving at least 75 primes values for n =0,1,...,99.

e If the maximum is less than 75, the polynomial is rejected.

Third step

In the list of polynomials we get from step 2, there are pairs of polynomials (p (n), q (n))
such that p(n) = —q(—n—k) for some integer k. Geometrically this means that graphs
of p and q are symmetric with respect to a vertical axis. For every pair of such polynomials
we cancel one of them.

3. Results

From step 1 we get 215 polynomials. After step 2 it remains 34 polynomials and after
step 3, 21 polynomials giving at least 75 prime values for n = 0, 1,99. They are listed below
with the number of prime values they have for 0 < n < 100, 200,..., 500.

Polynomials from step 1 have also been exploited to search the longest sequences of
consecutive integers n such that all corresponding values of p(n) are primes:

e Formulas (14) and (15) give 26 primes respectively for n =16,...,41 and n="74,...,99;
e Formula |2n3 —83n? + 1157 n —4999| gives 34 distinct primes for n=0,..., 33.
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Number of primes given by
an*+bn*+cn+d for

No a b c d n<i00 n<200 n<300 n<d400 n<S00
1) 1 —220 16119 —392723 75 134 179 219 261

2) 1 —-199 13190 —290869 75 124 163 206 235

(3) 1 —160 8547 —142811 75 130 179 221 264

4 1 —159 8420 —148153 76 124 164 203 238
(5) 1 —151 7610 —129097 76 125 168 204 245

(6) 1 —150 7493 —124277 76 128 170 217 250
W) 1 —137 6270 —95203 75 121 168 197 233
8) 1 —125 5196 —-73291 79 130 174 212 254

9) | —-119 4718 —-71741 75 118 158 190 224
(10) 1 —114 4343 —54829 76 125 171 200 232
(11) 1 —111 4100 —49367 76 119 150 199 246
(12) 1 -97 3126 —32603 75 115 161 195 235
(13) 1 —-96 3059 —32563 75 127 162 192 225
(14) 1 ~82 2237 —20407 75 112 149 183 218
(15) 2 —489 39847 —1084 553 75 134 176 222 267
(16) 2 —-372 23050 —476027 75 128 174 211 239
17 2 —292 14202 —231551 76 124 160 206 252
(18) 2 —289 13917 —221891 75 124 172 210 247
(19) 2 —281 13157 —204 487 78 129 169 214 250
(20) 2 —280 13072 —203857 76 123 168 204 240
(21) 2 —-199 6595 —79 657 79 125 174 217 257

P. Goetgheluck, Université de Paris-sud
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A remark on the gamma function

According to Problem 188, Part II of G. Pdlya and G. Szegd [2] for each integrable
function f(x) on 0 < x <1 we have:

lim —1-— :V_: f(5>~if(x)dx
noo @M K=1 n _0 ’
(k,m)=1
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