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Die Dehnsche Zerlegungsinvariante
für hyperbolische Polyederbausteine

1. Ich versuche hier, eine neue elementare Bestimmung der Dehnschen Invarianten fur die
als Bausteine hyperbolischer Polyeder dienenden «2-asymptotischen Orthoscheme» zu
verbinden mit dem referierenden Vertrautmachen mit der neuerdings von der Wartebank
aufs Spielfeld zurückgeholten hyperbolischen Raumgeometrie Lucken lassen sich, z T
allerdings nicht ohne eingehende Bemühung des Lesers, anhand des Übersichtsartikels [7]
und mit Hilfe der Monographie [2] stopfen
2. Hauptobjekte dieser Arbeit sind Tetraeder mit drei rechten Diederwinkeln Keil-
winkeln) längs des Kantenzuges A0A2AXA3 von Ecke zu Ecke, vgl Fig 1, gleichwertig
kann man fordern, dass die vier Seitendreiecke AxAJAk(i<j <k, i,j, ke {0,1,2,3}) bei As

rechwinklig seien, oder auch - fur die Konstruktion am einfachsten -, dass der Kantenzug
A0AXA2A3 total orthogonal sei Eingeführt wurden diese dreidimensionalen Analoga zu
den rechwinkhgen Dreiecken im hyperbolischen Raum H3 von Lobatschefskij (er nannte
sie Pyramiden, vgl [6, § 43]) und im sphanschen Raum S3, unabhängig, von Schläfli [9],
dessen Benennung Orthoscheme ich übernehme, eine tragende Rolle spielen sie etwa bei

Wythoff (der sie doppelt-rechwinkhg nannte) bei seiner Erweiterung [10] der Napierschen
Regeln der sphanschen Trigonometrie Die Bedeutung der Orthoscheme hegt dann, dass

sie einerseits eine Polyederklasse mit einem Minimum freier Parameter - etwa der drei
nicht schon als rechte festgelegten Diederwinkel - bilden, dass sich aber andererseits (und
zwar in der euklidischen, wie auch der sphärischen und hyperbolischen Raumgeometrie)
jedes dreidimensionale Polyeder in derartige Orthoscheme zerlegen lasst Es erweist sich

alledings oft bequemer - und in Dimensionen hoher als 4 eventuell sogar als

unumgänglich, eine entsprechende Vermutung Hadwigers uber die Baukasteneigenschaft
d-dimensionaler Orthoscheme ist noch ungeklärt, vgl [2, p 196] und [1] - neben Zerlegung

auch Ergänzung zuzulassen Dann wird also em Polyeder als «algebraische (d h

vorzeichenbehaftete) Summe» von Orthoschemen dargestellt, auf die Bestimmung des

Volumens und jeder anderen bewegungs- und zerlegungsinvananten Masszahl mit Werten

in einer abelschen Gruppe hat diese Erweiterung des Blickwinkels von Zerlegungs-
zu Erganzungsgleichheit keinen einschränkenden Einfluss
3. In der hyperbolischen Geometrie empfiehlt es sich vielfach, den Raum H3 durch
Grenzpunkte («im Unendlichen»), deren Gesamtheit dH3 als eine 2-dimensionale Sphäre
aufzufassen ist, zum «erweiterten hyperbolischen Raum» H3 zu erganzen, analog wie der
euklidische Raum E3 durch Punkte «im Unendlichen», die zusammen eine projektive
Ebene ausmachen, zum projektiven Raum P3 erweitert wird Im Kleinschen projektiven
Modell der hyperbolischen Geometrie [5, p 214 ff] stellt sich dann H3 dar als euklidische
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Figur 1 Ein Orthoschem A0AlA2A3 Figur 2 Ein 2-asymptotisches Tetraeder, dar¬

gestellt in Kleins projektivem Modell von H3

Einheitskugel in E3, mit deren Rand als Sphäre dH3 «im hyperbolisch Unendlichen».
Punkte, hyperbolische Geraden und von Ebenen begrenzte Halbräume von H3 (bzw. H3)
erscheinen dann als euklidische Punkte, Sehnen und von Kreisscheiben begrenzte
Kugelsegmente in der abgeschlossenen (bzw. offenen) Einheitskugel von E3.

Dieses Modell ist zwar kollinearitätstreu, aber weder Längenverhältnisse noch Winkel
sind darin anschaulich beurteilbar. Hingegen erzielt man Winkeltreue etwa durch Übergang

zu Poincares Halbraum-Modell von H3. Dieses besteht aus dem obern Halbraum
{(x, y9z)eE3\z > 0} des euklidischen Raumes, wobei jetzt die Menge dH3 der
Grenzpunkte als die Grenzebene G {(x, y, z) e E31 z 0}, ergänzt durch einen Punkt (oo),
auftritt. Hyperbolische Geraden bzw. Ebenen zeigen sich dann euklidisch als
Halbkreise und Halbgeraden, bzw. Halbsphären und Halbebenen, welche die Grenzebene G

orthogonal schneiden. Bequem ist dieses Modell insbesondere, weil sich die hyperbolische

Länge einer Kurve (insb. einer Strecke) t -> (x (t), y (t), z (t)) für a t b als

j ^j^2 + ^2 _j_ £2jz ^t errrutteln lässt, analog tritt bei Flächen- oder Volumenberechnun-
a

gen der euklidische Integralausdruck mit Zusatz eines Nenners z2 oder z3 im Integranden
auf.
4. Die Menge der hyperbolischen Polyeder in H3 kann dementsprechend auch erweitert
werden durch asymptotische Polyeder in H3; diese lassen sich als Grenzgebilde gewöhnlicher

Polyeder auffassen, wenn einzelne oder mehrere der Ecken ins Unendliche verlegt
werden, vgl. Fig. 2. Ein konvexes Polyeder in H3 heisst j-asymptotisch, wenn j seiner
Ecken auf dH3 liegen. Für ein Orthoschem A0AX A2A3 hat die geforderte Doppelrecht-
winkligkeit zur Folge, dass höchstens seine zwei «Hypotenusenendpunkte» _40 und A3
auf dH3 liegen können. Für 2-asymptotische Orthoscheme ist nur noch einer der Diederwinkel,

etwa derjenige längs der (unendlich langen) Hypotenuse AQA3 frei wählbar, und
durch diesen sind sie bis auf Kongruenz eindeutig bestimmt. Bezeichnet man diesen

Diederwinkel längs der Hypotenuse mit \n — ol, so heisse das betreffende Orthoschem
L(a); längs der Kanten A0AX und A2A3 wird dann der Diederwinkel a gebildet, die
restlichen drei Diederwinkel sind rechte. Durch eine Kongruenzabbildung kann L (a) in



68 El Math Vol 44 1989

^\/\V

M

Figur 3 Em 2 asymptotisches Orthoschem A0A1A2A3, dargestellt in Poincares Halbraummodell von H3

eine solche Lage gebracht werden, dass es in Poincares Halbraum-Modell erscheint als

Menge M der Punkte, die sowohl vertikal oberhalb eines rechtwinkligen Dreiecks
Äx _42 A3 in der Grenzebene G, mit euklidischer Lange 1 der Hypotenuse Äx A3 und
spitzem Winkel a bei Äx, als auch vertikal oberhalb einer euklidischen Emheitssphare mit
Zentrum A'x liegen, vgl Figur 3 Die Ecken _40 bzw A3 von L(ol) auf dH3 muss man sich
dann als die Punkte dieser Menge mit Koordinate z oo bzw z 0 vorstellen, ferner Ax
und A2 als Durchstosspunkte der Vertikalen durch A'x und _42 mit der obern Einheits-
hemisphare
5. Lobatschefskij hat mehrfach gezeigt (z B in [6, § 46]), dass sich jedes Tetraeder in H3
als algebraische Summe von vier asymptotischen Orthoschemen darstellen lasst Diese

Bemerkung wurde von Sah [8] dahin erweitert, dass sich jedes Polyeder m H3 sogar als

algebraische Summe endlich vieler 2-asymptotischer Orthoscheme L(ol) (0<o:<±n)
darstellen lasst (das analoge gilt ubngens in jeder ungeradzahligen Dimension, vgl [3],
und auf Beizug von Vorzeichen, bzw von Erganzungsgleichheit lasst sich nicht verzichten)

Damit lassen sich alle bewegungs- und zerlegungsinvananten Masszahlen fur Polyeder

in H3 (und speziell auch in H3) als Summe und Differenz derselben Invarianten
fur verschiedene L(ol) (0<oL<^ri) darstellen Insbesondere kann man bei Milnor
[7, pp 17-20] nachlesen, auf wie einfache Weise sich durch Ermitteln des Integrals
J l/z3dxdydz der m äquivalenter Form auch schon von Lobatschefskij berechnete
M
Volumenwert

Vol(L(a))= -|Jlog|2sma|da
o

gewinnen lasst

(1)
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5 Ich zeige jetzt, dass sich auf ebenso naheliegende elementare Art die Dehninvariante
von L (a) als

W(L (ol)) log 12 sin ol \ ® ol (2)

bestimmen lasst Eine weniger naheliegende, aber auch elementare Berechnung stammt
von Dupont und Sah, vgl [4, p 169] Die Dehnsche Invariante, die sich aus den Arbeiten
von Dehn, Hadwiger, Sydler und Jessen zur Zerlegungstheone der Polyeder entwickelt
hat, ist fur em konvexes Polyeder B cz H3 (und genau gleich in E3 und S3) durch

Y(B) I,lK®*K (3)

definiert, die Summe erstreckt sich uber alle Kanten K von B, deren Lange wird mit /K

und der längs K gebildete Diederwinkel, reduziert modulo \n, mit olk bezeichnet
Nebenbei die Beziehung zwischen der algebraischen Formel (2) und der gleichgebauten
analytischen Formel (1), und genau gleich zwischen (3) und Schläflis Differentialformel

dV \"£ldoi (4)

fur das Volumen, ausgedruckt durch Kantenlangen und Variation der entsprechenden
Diederwinkel, [9, p 235], hegt noch vollständig im mathematischen Dunkel Fur
asymptotische hyperbolische konvexe Polyeder B (bei denen zwar Kantenlangen, nie aber
Volumen unendlich werden) ist die Interpretation von (3) zu modifizieren, z B nach
Thurston (vgl [8, Appendix 2]) wie folgt um alle Eckpunkte A auf dH3 von B cz H3 lege

man paarweise disjunkte Horosphären HA um A derart, dass HA jede von A auslaufenden
Kante von B noch in einem von A verschiedenen Punkt trifft, unter lK verstehe man dann
in (3) die Lange desjenigen Teils von K, der ausserhalb der eventuell um seine Eckpunkte
gelegten Horosphären hegt Weil die Summe der Diederwinkel an den Polytopkanten
durch einen unendlich fernen Eckpunkt gleich wie bei dem von der Horosphäre aus B

ausgeschnittenen euklidischen Vieleck ein ganzes Vielfaches von n betragt und weil zwei
Horosphären HA und H'A um A auf allen Geraden durch A gleichlange Strecken
ausschneiden, hangt dann der durch (3) gegebene Wert nicht von der speziellen Wahl der zu
legenden Horosphären ab Horosphären (die als Grenzgebilde in Scharen von metnschen
Sphären durch einen festen Punkt, mit Zentren auf einem festen von diesem Punkt
ausgehenden Strahl definierbar sind, also gleichsam als metrische Kugelflachen mit
Zentrum im Unendlichen, was aber im Unterschied zum euklidischen Analogon nicht zu
Ebenen fuhrt) erscheinen im Poincare-Modell als euklidische Sphären, die die Grenzebene

G tangieren, oder auch als euklidische Ebenen z u > 0 parallel zur Grenzebene
G Zum Nachweis von (2) wählen wir als Horosphäre um die Ecke A3 im obern Halbraum
von E3 die euklidische Sphäre mit Radius sma und Zentrum im Abstand sina uber A3
Offensichtlich hegt der Teil von A0 A3 mit z 2 sin a ausserhalb dieser Horosphäre, und
die Kante K A2A3 hat sogar beide Eckpunkte auf der Horosphäre, so dass von ihr her

nur noch die Kantenlange /K 0 bei (3) ins Spiel tritt Als die um den Eckpunkt _40 (oo)

von L(a) zu legende Horosphäre wählen wir beispielsweise die Ebene z u > 2 Die in
(3) auftretenden Terme sind bis auf zwei je 0, namhch derjenige zu K A2A3 wegen
lK 0, wie oben erwähnt, und die fur A0A29AXA2 und AXA3, weil der Diederwinkel \n,
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also modulo \n reduziert 0, beträgt. Es bleiben die Terme längs A0A3 (mit dem
u

Diederwinkel \n — ol und der Kantenlänge / J 1/z dz zwischen den gelegten Horo-
2 sin a

u

Sphären), und längs A0AX (mit dem Diederwinkel a und der Länge J 1/z dz ausserhalb der
i

Horosphären). Die elementare Ermittlung der Integrale führt auf

W(L(a)) (logu - log|2sina|)® (f - a) + (logu)®0L,

also nach Reduzierung mod \ n und Addition auf

W(L (ol)) log 12 sin a | ® a, w.z.b.w.

Hans E. Debrunner, Math. Institut, Universität Bern
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On cubic polynomials giving many primes

1. Introduction

In the following «prime» means positive or negative prime, that is an integer of the

sequence -7, -5, -3, -29 2, 3, 5, 7, 11...
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