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Die Dehnsche Zerlegungsinvariante
fir hyperbolische Polyederbausteine

1. Ich versuche hier, eine neue elementare Bestimmung der Dehnschen Invarianten fiir die
als Bausteine hyperbolischer Polyeder dienenden «2-asymptotischen Orthoscheme» zu
verbinden mit dem referierenden Vertrautmachen mit der neuerdings von der Wartebank
aufs Spielfeld zuriickgeholten hyperbolischen Raumgeometrie. Liicken lassen sich, z.T.
allerdings nicht ohne eingehende Bemiihung des Lesers, anhand des Ubersichtsartikels [7]
und mit Hilfe der Monographie [2] stopfen.

2. Hauptobjekte dieser Arbeit sind Tetraeder mit drei rechten Diederwinkeln (= Keil-
winkeln) lings des Kantenzuges 4, 4, A, A; von Ecke zu Ecke, vgl. Fig. 1; gleichwertig
kann man fordern, dass die vier Seitendreiecke 4; A; A, (i <j <k;i,j,ke{0,1,2,3}) bei 4;
rechwinklig seien, oder auch — fiir die Konstruktion am einfachsten —, dass der Kantenzug
Ay A, A, A, total orthogonal sei. Eingefiihrt wurden diese dreidimensionalen Analoga zu
den rechwinkligen Dreiecken im hyperbolischen Raum H? von Lobatschefskij (er nannte
sie Pyramiden, vgl. [6, § 43]) und im sphérischen Raum S, unabhingig, von Schlifli [9],
dessen Benennung Orthoscheme ich iibernehme; eine tragende Rolle spielen sie etwa bei
Wythoff (der sie doppelt-rechwinklig nannte) bei seiner Erweiterung [10] der Napierschen
Regeln der sphérischen Trigonometrie. Die Bedeutung der Orthoscheme liegt darin, dass
sie einerseits eine Polyederklasse mit einem Minimum freier Parameter — etwa der drei
nicht schon als rechte festgelegten Diederwinkel — bilden, dass sich aber andererseits (und
zwar in der euklidischen, wie auch der sphéirischen und hyperbolischen Raumgeometrie)
jedes dreidimensionale Polyeder in derartige Orthoscheme zerlegen ldsst. Es erweist sich
alledings oft bequemer — und in Dimensionen hoéher als 4 eventuell sogar als unum-
ginglich; eine entsprechende Vermutung Hadwigers iiber die Baukasteneigenschaft
d-dimensionaler Orthoscheme ist noch ungeklirt, vgl. [2, p. 196] und [1] — neben Zerle-
gung auch Ergidnzung zuzulassen. Dann wird also ein Polyeder als «algebraische (d.h.
vorzeichenbehaftete) Summe» von Orthoschemen dargestellt; auf die Bestimmung des
Volumens und jeder anderen bewegungs- und zerlegungsinvarianten Masszahl mit Wer-
ten in einer abelschen Gruppe hat diese Erweiterung des Blickwinkels von Zerlegungs-
zu Ergidnzungsgleichheit keinen einschrinkenden Einfluss.

3. In der hyperbolischen Geometrie empfiehlt es sich vielfach, den Raum H?> durch
Grenzpunkte («<im Unendlichen»), deren Gesamtheit dH? als eine 2-dimensionale Sphire
aufzufassen ist, zum «erweiterten hyperbolischen Raum» H? zu erginzen, analog wie der
euklidische Raum E* durch Punkte «im Unendlichen», die zusammen eine projektive
Ebene ausmachen, zum projektiven Raum P> erweitert wird. Im Kleinschen projektiven
Modell der hyperbolischen Geometrie [5, p. 214 ff] stellt sich dann H? dar als euklidische
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Figur 1. Ein Orthoschem A, A4, 4, A,. Figur 2. Ein 2-asymptotisches Tetraeder, dar-
gestellt in Kleins projektivem Modell von H3.

Einheitskugel in E>, mit deren Rand als Sphire 0H® «im hyperbolisch Unendlichen».
Punkte, hyperbolische Geraden und von Ebenen begrenzte Halbriume von H? (bzw. H?)
erscheinen dann als euklidische Punkte, Sehnen und von Kreisscheiben begrenzte Kugel-
segmente in der abgeschlossenen (bzw. offenen) Einheitskugel von E3.

Dieses Modell ist zwar kollinearititstreu, aber weder Lingenverhéltnisse noch Winkel
sind darin anschaulich beurteilbar. Hingegen erzielt man Winkeltreue etwa durch Uber-
gang zu Poincarés Halbraum-Modell von H?. Dieses besteht aus dem obern Halbraum
{(x,y,z)e E*|z > 0} des euklidischen Raumes, wobei jetzt die Menge 0H*> der Grenz-
punkte als die Grenzebene G = {(x, y,z)€ E*| z = 0}, erginzt durch einen Punkt (c0),
auftritt. Hyperbolische Geraden bzw. Ebenen zeigen sich dann euklidisch als Halb-
kreise und Halbgeraden, bzw. Halbsphdren und Halbebenen, welche die Grenzebene G
orthogonal schneiden. Bequem ist dieses Modell insbesondere, weil sich die hyperboli-
sche Linge einer Kurve (insb. einer Strecke) t — (x(t), y(t),z(t)) fir a<t<b als

b
{/%* + y* + #?/zdt ermitteln ldsst, analog tritt bei Flichen- oder Volumenberechnun-
a

gen der euklidische Integralausdruck mit Zusatz eines Nenners z2 oder z* im Integranden
auf.

4. Die Menge der hyperbolischen Polyeder in H* kann dementsprechend auch erweitert
werden durch asymptotische Polyeder in H?; diese lassen sich als Grenzgebilde gewdhnli-
cher Polyeder auffassen, wenn einzelne oder mehrere der Ecken ins Unendliche verlegt
werden, vgl. Fig. 2. Ein konvexes Polyeder in H? heisst j-asymptotisch, wenn j seiner
Ecken auf 0H? liegen. Fiir ein Orthoschem A, A, A, A, hat die geforderte Doppelrecht-
winkligkeit zur Folge, dass hochstens seine zwei «Hypotenusenendpunkte» 4, und A,
auf OH? liegen konnen. Fiir 2-asymptotische Orthoscheme ist nur noch einer der Dieder-
winkel, etwa derjenige ldngs der (unendlich langen) Hypotenuse A, 4, frei wéhlbar, und
durch diesen sind sie bis auf Kongruenz eindeutig bestimmt. Bezeichnet man diesen
Diederwinkel lings der Hypotenuse mit 37 — «, so heisse das betreffende Orthoschem
L(a); langs der Kanten Ay A4, und 4, A; wird dann der Diederwinkel a gebildet, die
restlichen drei Diederwinkel sind rechte. Durch eine Kongruenzabbildung kann L(«) in
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Figur 3. Ein 2-asymptotisches Orthoschem A, 4, A, A,, dargestellt in Poincarés Halbraummodell von H>.

eine solche Lage gebracht werden, dass es in Poincarés Halbraum-Modell erscheint als
Menge M der Punkte, die sowohl vertikal oberhalb eines rechtwinkligen Dreiecks
A A, A, in der Grenzebene G, mit euklidischer Linge 1 der Hypotenuse A7 4; und
spitzem Winkel a bei 4, als auch vertikal oberhalb einer euklidischen Einheitssphére mit
Zentrum A liegen, vgl. Figur 3. Die Ecken A, bzw. A5 von L(x) auf 9H> muss man sich
dann als die Punkte dieser Menge mit Koordinate z = oo bzw. z = 0 vorstellen, ferner 4,
und A, als Durchstosspunkte der Vertikalen durch A und A, mit der obern Einheits-
hemisphire.

5. Lobatschefskij hat mehrfach gezeigt (z.B. in [6, § 46]), dass sich jedes Tetraeder in H?
als algebraische Summe von vier asymptotischen Orthoschemen darstellen ldsst. Diese
Bemerkung wurde von Sah [8] dahin erweitert, dass sich jedes Polyeder in H> sogar als
algebraische Summe endlich vieler 2-asymptotischer Orthoscheme L () (0 <« <37)
darstellen lasst (das analoge gilt iibrigens in jeder ungeradzahligen Dimension, vgl. [3],
und auf Beizug von Vorzeichen, bzw. von Ergdnzungsgleichheit lédsst sich nicht verzich-
ten). Damit lassen sich alle bewegungs- und zerlegungsinvarianten Masszahlen fiir Poly-
eder in H* (und speziell auch in H?) als Summe und Differenz derselben Invarianten
fir verschiedene L(x) (0 <a < %n) darstellen. Insbesondere kann man bei Milnor
[7, pp. 17-20] nachlesen, auf wie einfache Weise sich durch Ermitteln des Integrals
{1/z*dxdydz der in dquivalenter Form auch schon von Lobatschefskij berechnete
M

Volumenwert
Vol (L(®)) = — 1 [log|2 sin a| da (1)
0

gewinnen ldsst.
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5. Ich zeige jetzt, dass sich auf ebenso naheliegende elementare Art die Dehninvariante
von L (x) als

Y(L(x)) =log|2sina|® a 2)

bestimmen ldsst. Eine weniger naheliegende, aber auch elementare Berechnung stammt
von Dupont und Sah, vgl. [4, p. 169]. Die Dehnsche Invariante, die sich aus den Arbeiten
von Dehn, Hadwiger, Sydler und Jessen zur Zerlegungstheorie der Polyeder entwickelt
hat, ist fir ein konvexes Polyeder B = H? (und genau gleich in E® und S3) durch

¥ (B) =2 lk®@ag (3)

definiert; die Summe erstreckt sich tiber alle Kanten K von B, deren Linge wird mit I
und der lings K gebildete Diederwinkel, reduziert modulo 37, mit oy bezeichnet.

Nebenbei: die Beziechung zwischen der algebraischen Formel (2) und der gleichgebauten
analytischen Formel (1), und genau gleich zwischen (3) und Schliflis Differentialformel

dV =1¥1d« @)

fiir das Volumen, ausgedriickt durch Kantenldngen und Variation der entsprechenden
Diederwinkel, [9, p. 235], liegt noch vollstdndig im mathematischen Dunkel. Fiir asymp-
totische hyperbolische konvexe Polyeder B (bei denen zwar Kantenldngen, nie aber
Volumen unendlich werden) ist die Interpretation von (3) zu modifizieren, z.B. nach
Thurston (vgl. [8, Appendix 2]) wie folgt: um alle Eckpunkte 4 auf dH* von B < H? lege
man paarweise disjunkte Horosphdren H, um A derart, dass H, jede von A auslaufenden
Kante von B noch in einem von A verschiedenen Punkt trifft; unter [, verstehe man dann
in (3) die Linge desjenigen Teils von K, der ausserhalb der eventuell um seine Eckpunkte
gelegten Horosphiren liegt. Weil die Summe der Diederwinkel an den Polytopkanten
durch einen unendlich fernen Eckpunkt gleich wie bei dem von der Horosphidre aus B
ausgeschnittenen euklidischen Vieleck ein ganzes Vielfaches von # betrigt und weil zwei
Horosphidren H, und H), um A auf allen Geraden durch A gleichlange Strecken aus-
schneiden, hiangt dann der durch (3) gegebene Wert nicht von der speziellen Wahl der zu
legenden Horosphidren ab. Horosphéren (die als Grenzgebilde in Scharen von metrischen
Sphédren durch einen festen Punkt, mit Zentren auf einem festen von diesem Punkt
ausgehenden Strahl definierbar sind, also gleichsam als metrische Kugelflichen mit Zen-
trum im Unendlichen, was aber im Unterschied zum euklidischen Analogon nicht zu
Ebenen fiihrt) erscheinen im Poincaré-Modell als euklidische Sphiren, die die Grenz-
ebene G tangieren, oder auch als euklidische Ebenen z = u > 0 parallel zur Grenzebene
G. Zum Nachweis von (2) wéhlen wir als Horosphéare um die Ecke A, im obern Halbraum
von E? die euklidische Sphére mit Radius sin« und Zentrum im Abstand sin o« iiber 4;.
Offensichtlich liegt der Teil von A, A; mit z = 2 sin « ausserhalb dieser Horosphire, und
die Kante K = A4, A, hat sogar beide Eckpunkte auf der Horosphire, so dass von ihr her
nur noch die Kantenldnge Iy = 0 bei (3) ins Spiel tritt. Als die um den Eckpunkt 4, = (o0)
von L () zu legende Horosphédre wihlen wir beispielsweise die Ebene z = u > 2. Die in
(3) auftretenden Terme sind bis auf zwei je 0; ndmlich derjenige zu K = A, A; wegen
Ix = 0, wie oben erwihnt, und die fiir 4, A,, A; A, und A, A,, weil der Diederwinkel 1 7,
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also modulo 7 reduziert = 0, betrigt. Es bleiben die Terme lings A, A; (mit dem

Diederwinkel 27 — o und der Kantenlénge | = | 1/zdz zwischen den gelegten Horo-

2sin a

sphiren), und lings A, 4, (mit dem Diederwinkel o und der Lénge | 1/z dz ausserhalb der
1

Horosphéren). Die elementare Ermittlung der Integrale fiihrt auf

Y (L() = (logu —log|2sina)) ® (F — o) + (logu) ® «,

also nach Reduzierung mod ;7 und Addition auf

Y(L(x)) =log|2sina|@a, w.z.b.w.

Hans E. Debrunner, Math. Institut, Universitdt Bern
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On cubic polynomials giving many primes

1. Introduction

In the following «prime» means positive or negative prime, that is an integer of the
sequence ... —7, —5, —3, —2,2,3,5,7,11...
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