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Straight line representations of planar graphs

For the purposes of this article a graph is a collection of vertices, some distinct pairs of
which are joined by a single edge (i.e. there are no loops or multiple edges). A graph is
planar if it can be illustrated in the plane with no two of its edges meeting except at a
vertex which is an endpoint of them both. Figure 1(a) shows a graph, 1(b) shows a planar
representation of it, and 1(c) shows a planar representation in which each edge is a
straight line segment.
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Figure 1.

It is a well-known, but still surprising result, proved independently by Wagner in 1936 [2]
and Fary in 1948 [1], that any planar graph has a planar representation in which the edges
are straight line segments.

It will be noted in Figures 1(b) and 1(c) that a set of edges forms a boundary of a face
in one if and only if the same set of edges in the same order forms a boundary of a face
in the other (for example the “cycle” 3456 bounds a face in each). In addition the infinite
(or unbounded) face in one remains the infinite face in the other. Two such planar
representations will be called equivalent. As is common in work on this topic, we shall
restrict attention to planar graphs in which each face is bound by a cycle, all other planar
graphs being simple combinations of graphs of this type.

We now prove a minor generalisation of the Wagner-Fary result. The generalisation is
interesting in its own right but has the great advantage that, by proving a little more than
in the original result, we simplify its proof!

Theorem: Given a planar representation of a graph in which the boundary of each face is
a cycle, and given one particular finite face f, there exists an equivalent planar representa-
tion in which each edge is represented by a straight line segment and in which the face f
forms a convex polygon.

Proof: The proof is by induction on k, the number of finite faces of the representation. The
smallest possible value of k is 1, in which case the graph consists of a single cycle which
can trivially be illustrated as a convex polygon, giving the required representation.
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Figure 2.

So assume that kK = 1 and that the result is known for representations of graphs with k
finite faces, and consider a planar representation of a graph with k + 1 finite faces, one
of which is called f. If each edge bounding f also bounds the infinite face then the
representation is as in Figure 2, and clearly this contradicts the fact that the infinite face
is bounded by a cycle. Therefore some boundary edge of f bounds another finite face,
f'say. If f U f' surrounds a region of the plane, then we can re-choose f’ in that region
to give an f and f' as illustrated in Figure 3(a).

(a) (b)
Figure 3.

If we now remove all the edges on the boundary common to f and f' then we get a planar
representation of a graph with only k finite faces, one of which is “f U f’”, to which the
induction hypothesis can be applied. This gives an equivalent straight line representation
with “f U f'” convex: clearly the missing edges can be put back in across the face “f U f'”,
as in Figure 3(b), to give the required straight line representation of the original graph
with f convex.

That completes the proof by induction. [

I gave that result and proof in a course in graph theory some years ago. I am indebted
to Douglas Woodall for reminding me of it and encouraging me to publish it.

V. W. Bryant
Department of Pure Mathematics
Sheffield University
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Die Dehnsche Zerlegungsinvariante
fir hyperbolische Polyederbausteine

1. Ich versuche hier, eine neue elementare Bestimmung der Dehnschen Invarianten fiir die
als Bausteine hyperbolischer Polyeder dienenden «2-asymptotischen Orthoscheme» zu
verbinden mit dem referierenden Vertrautmachen mit der neuerdings von der Wartebank
aufs Spielfeld zuriickgeholten hyperbolischen Raumgeometrie. Liicken lassen sich, z.T.
allerdings nicht ohne eingehende Bemiihung des Lesers, anhand des Ubersichtsartikels [7]
und mit Hilfe der Monographie [2] stopfen.

2. Hauptobjekte dieser Arbeit sind Tetraeder mit drei rechten Diederwinkeln (= Keil-
winkeln) lings des Kantenzuges 4, 4, A, A; von Ecke zu Ecke, vgl. Fig. 1; gleichwertig
kann man fordern, dass die vier Seitendreiecke 4; A; A, (i <j <k;i,j,ke{0,1,2,3}) bei 4;
rechwinklig seien, oder auch — fiir die Konstruktion am einfachsten —, dass der Kantenzug
Ay A, A, A, total orthogonal sei. Eingefiihrt wurden diese dreidimensionalen Analoga zu
den rechwinkligen Dreiecken im hyperbolischen Raum H? von Lobatschefskij (er nannte
sie Pyramiden, vgl. [6, § 43]) und im sphérischen Raum S, unabhingig, von Schlifli [9],
dessen Benennung Orthoscheme ich iibernehme; eine tragende Rolle spielen sie etwa bei
Wythoff (der sie doppelt-rechwinklig nannte) bei seiner Erweiterung [10] der Napierschen
Regeln der sphérischen Trigonometrie. Die Bedeutung der Orthoscheme liegt darin, dass
sie einerseits eine Polyederklasse mit einem Minimum freier Parameter — etwa der drei
nicht schon als rechte festgelegten Diederwinkel — bilden, dass sich aber andererseits (und
zwar in der euklidischen, wie auch der sphéirischen und hyperbolischen Raumgeometrie)
jedes dreidimensionale Polyeder in derartige Orthoscheme zerlegen ldsst. Es erweist sich
alledings oft bequemer — und in Dimensionen hoéher als 4 eventuell sogar als unum-
ginglich; eine entsprechende Vermutung Hadwigers iiber die Baukasteneigenschaft
d-dimensionaler Orthoscheme ist noch ungeklirt, vgl. [2, p. 196] und [1] — neben Zerle-
gung auch Ergidnzung zuzulassen. Dann wird also ein Polyeder als «algebraische (d.h.
vorzeichenbehaftete) Summe» von Orthoschemen dargestellt; auf die Bestimmung des
Volumens und jeder anderen bewegungs- und zerlegungsinvarianten Masszahl mit Wer-
ten in einer abelschen Gruppe hat diese Erweiterung des Blickwinkels von Zerlegungs-
zu Ergidnzungsgleichheit keinen einschrinkenden Einfluss.

3. In der hyperbolischen Geometrie empfiehlt es sich vielfach, den Raum H?> durch
Grenzpunkte («<im Unendlichen»), deren Gesamtheit dH? als eine 2-dimensionale Sphire
aufzufassen ist, zum «erweiterten hyperbolischen Raum» H? zu erginzen, analog wie der
euklidische Raum E* durch Punkte «im Unendlichen», die zusammen eine projektive
Ebene ausmachen, zum projektiven Raum P> erweitert wird. Im Kleinschen projektiven
Modell der hyperbolischen Geometrie [5, p. 214 ff] stellt sich dann H? dar als euklidische
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