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Straight line representations of planar graphs

For the purposes of this article a graph is a collection of vertices, some distinct pairs of
which are joined by a Single edge (i.e. there are no loops or multiple edges). A graph is

planar if it can be illustrated in the plane with no two of its edges meeting except at a
vertex which is an endpoint of them both. Figure 1 (a) shows a graph, 1 (b) shows a planar
representation of it, and 1 (c) shows a planar representation in which each edge is a
straight line segment.

(a)

Figure 1.

(b) (c)

It is a well-known, but still surprising result, proved independently by Wagner in 1936 [2]
and Fary in 1948 [1], that any planar graph has a planar representation in which the edges

are straight line segments.
It will be noted in Figures 1 (b) and 1 (c) that a set of edges forms a boundary of a face

in one if and only if the same set of edges in the same order forms a boundary of a face
in the other (for example the "cycle" 3456 bounds a face in each). In addition the infinite
(or unbounded) face in one remains the infinite face in the other. Two such planar
representations will be called equivalent. As is common in work on this topic, we shall
restrict attention to planar graphs in which each face is bound by a cycle, all other planar
graphs being simple combinations of graphs of this type.
We now prove a minor generalisation of the Wagner-Fary result. The generalisation is

interesting in its own right but has the great advantage that, by proving a little more than
in the original result, we simplify its proof!

Theorem: Given a planar representation ofa graph in which the boundary of each face is

fl cycle, and given one particular finite facef there exists an equivalent planar representation

in which each edge is represented by a straight line segment and in which the face f
forms a convex polygon.

Proof: The proof is by induction on k, the number of finite faces ofthe representation. The
smallest possible value of k is 1, in which case the graph consists of a Single cycle which
can trivially be illustrated as a convex polygon, giving the required representation.
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/

Figure 2

So assume that k 1 and that the result is known for representations of graphs with k
finite faces, and consider a planar representation of a graph with k + l finite faces, one
of which is called / If each edge bounding / also bounds the infinite face then the

representation is as in Figure 2, and clearly this contradicts the fact that the infinite face

is bounded by a cycle Therefore some boundary edge of / bounds another finite face,

/' say If fv f surrounds a region of the plane, then we can re-choose /' in that region
to give an / and /' as illustrated m Figure 3(a)

Cb

Figure 3

If we now remove all the edges on the boundary common to / and /' then we get a planar
representation of a graph with only k finite faces, one of which is "/ u /'", to which the
induction hypothesis can be applied This gives an equivalent straight line representation
with "/ u /'" convex clearly the missing edges can be put back in across the face "/ u /'",
as in Figure 3 (b), to give the required straight line representation of the onginal graph
with / convex
That completes the proof by induction D

I gave that result and proof in a course in graph theory some years ago I am indebted
to Douglas Woodall for remmding me of it and encouraging me to pubhsh it

V W Bryant
Department of Pure Mathematics

Sheffield University
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Die Dehnsche Zerlegungsinvariante
für hyperbolische Polyederbausteine

1. Ich versuche hier, eine neue elementare Bestimmung der Dehnschen Invarianten fur die
als Bausteine hyperbolischer Polyeder dienenden «2-asymptotischen Orthoscheme» zu
verbinden mit dem referierenden Vertrautmachen mit der neuerdings von der Wartebank
aufs Spielfeld zurückgeholten hyperbolischen Raumgeometrie Lucken lassen sich, z T
allerdings nicht ohne eingehende Bemühung des Lesers, anhand des Übersichtsartikels [7]
und mit Hilfe der Monographie [2] stopfen
2. Hauptobjekte dieser Arbeit sind Tetraeder mit drei rechten Diederwinkeln Keil-
winkeln) längs des Kantenzuges A0A2AXA3 von Ecke zu Ecke, vgl Fig 1, gleichwertig
kann man fordern, dass die vier Seitendreiecke AxAJAk(i<j <k, i,j, ke {0,1,2,3}) bei As

rechwinklig seien, oder auch - fur die Konstruktion am einfachsten -, dass der Kantenzug
A0AXA2A3 total orthogonal sei Eingeführt wurden diese dreidimensionalen Analoga zu
den rechwinkhgen Dreiecken im hyperbolischen Raum H3 von Lobatschefskij (er nannte
sie Pyramiden, vgl [6, § 43]) und im sphanschen Raum S3, unabhängig, von Schläfli [9],
dessen Benennung Orthoscheme ich übernehme, eine tragende Rolle spielen sie etwa bei

Wythoff (der sie doppelt-rechwinkhg nannte) bei seiner Erweiterung [10] der Napierschen
Regeln der sphanschen Trigonometrie Die Bedeutung der Orthoscheme hegt dann, dass

sie einerseits eine Polyederklasse mit einem Minimum freier Parameter - etwa der drei
nicht schon als rechte festgelegten Diederwinkel - bilden, dass sich aber andererseits (und
zwar in der euklidischen, wie auch der sphärischen und hyperbolischen Raumgeometrie)
jedes dreidimensionale Polyeder in derartige Orthoscheme zerlegen lasst Es erweist sich

alledings oft bequemer - und in Dimensionen hoher als 4 eventuell sogar als

unumgänglich, eine entsprechende Vermutung Hadwigers uber die Baukasteneigenschaft
d-dimensionaler Orthoscheme ist noch ungeklärt, vgl [2, p 196] und [1] - neben Zerlegung

auch Ergänzung zuzulassen Dann wird also em Polyeder als «algebraische (d h

vorzeichenbehaftete) Summe» von Orthoschemen dargestellt, auf die Bestimmung des

Volumens und jeder anderen bewegungs- und zerlegungsinvananten Masszahl mit Werten

in einer abelschen Gruppe hat diese Erweiterung des Blickwinkels von Zerlegungs-
zu Erganzungsgleichheit keinen einschränkenden Einfluss
3. In der hyperbolischen Geometrie empfiehlt es sich vielfach, den Raum H3 durch
Grenzpunkte («im Unendlichen»), deren Gesamtheit dH3 als eine 2-dimensionale Sphäre
aufzufassen ist, zum «erweiterten hyperbolischen Raum» H3 zu erganzen, analog wie der
euklidische Raum E3 durch Punkte «im Unendlichen», die zusammen eine projektive
Ebene ausmachen, zum projektiven Raum P3 erweitert wird Im Kleinschen projektiven
Modell der hyperbolischen Geometrie [5, p 214 ff] stellt sich dann H3 dar als euklidische
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