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Abschätzungen ganzzahliger Polynome
auf dem Intervall [0,1]

1. Einleitung

Betrachtet man die ganzzahligen Polynome

P2n(x) x"(l-x)" (1)

vom Grade 2n, so fallt auf, dass diese auf dem Intervall [0,1] die Werte

t' \ \2n

m2n=lj) (2)

als Maximum annehmen Insbesondere konvergieren diese Maxima fur n -* oo exponen-
tiell gegen 0 Es stellt sich nun die Frage, ob man ganzzahlige Polynome finden kann, die

em kleineres Maximum besitzen, und wenn ja, wie weit man diese Werte aus (2) überhaupt
verbessern kann Diese Fragestellung soll zunächst einmal präzisiert werden Dazu
bezeichne man fur n 1,2, durch &n die Menge aller Polynome n-ten Grades

Pn(x) anxn + an_xxn-1+ +a0 (an¥=0) (3)

mit ganzzahligen Koeffizienten ak(k 0,1, n) und betrachte dazu die Grosse

pn= min (m(Pn)Y'\ (4)

wobei

m(Pn)= max |Pn(x)| (5)
0<x< 1

das Maximum des Absolutbetrages von Pn(x) auf [0,1] bezeichnen soll (Dass das Minimum

in (4) tatsachlich existiert, wird im nächsten Abschnitt gezeigt)
Die Aussage (2) kann nun zu

»2„A (6)
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umformuliert werden, und die oben gestellte Frage ist darauf reduziert, wie sich die un für
n -» oo verhalten. Diese Fragestellung soll in dieser Note behandelt werden.
Im folgenden Abschnitt wird gezeigt, dass die Folge der un gegen einen Grenzwert u

konvergiert, der die Abschätzung

1 1

-<p<-T=e V5

erfüllt, wobei aber stets un > p gilt. Die obere Schranke wird durch eine explizite
Konstruktion bewiesen, wogegen die untere Schranke 1/e interessanterweise aus dem
Primzahlsatz folgt. Demnach gilt für jedes ganzzahlige Polynom Pns^n

m(P„)>(0. (7)

2. Schranken für nn und n

Zunächst muss sichergestellt werden, dass das Minimum in der Definition (4) existiert.

Lemma 1. Es gibt nur endlich viele Polynome Pne&n mit m (PJ < 1.

Beweis: Ist Pn(x) anxn + an^xxn~1 + + a0,so lassen sich die Koeffizienten aus dem
linearen Gleichungssystem

>?„(0fl< p»(Ö' '-*1--"

berechnen, wobei die Koeffizientenmatrix ((j/n)k)j,k=o,i,...,n euie nur von n abhängige,
reguläre (Vandermondsche) Matrix ist. Da wegen \Pn(j/n)\ < 1 nur endlich viele Werte für
Pn(j/n) in Frage kommen, gibt es daher nur endlich viele Polynome Pn e &n mit m(Pn) < 1.

Bemerkung: Man kann für die Koeffizienten ak auch folgende explizite Schranken angeben:

\ak\<2kk\[';X k 0,l,...,n. (8)

Da nämlich m(Pn) <> 1 jedenfalls m(Ptt') <2n2 impliziert (siehe [4]) und die Koeffizienten

ak durch l*k)(0)/kl berechenbar sind, folgt (8) durch induktive Anwendung der
erstgenannten Eigenschaft.
Für den Nachweis, dass die Folge OuXL x konvergiert, sei folgende Eigenschaft
vorangestellt.
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Lemma 2. Ist n> k > 2, und schreibt man n in der Form n qk + r mit 0 <r <k, dann

gilt

^<Mi/(1+;). (9)

Beweis: Sei Pk(x) ein Polynom aus 0>k mit m(Pk) p\, dann gilt für Q„(x) Pk(x)qxr aus
0>n m(Qn)< p\q, woraus aber

pn<pkk*<*<p)!^

folgt.
Damit ist der Beweis des folgenden Satzes nicht mehr schwer.

Satz 1. Die Folge (pj„ x, definiert in (4), konvergiert gegen einen Grenzwert p,für den

für alle n> 1

Hn>V (10)

gilt.

Beweis: Es bezeichne zunächst

p lim infun.
n-+ co

Aus (9) folgt für jedes k > 2

lim sup pn < lim sup pk^+«) pk, (11)
«-?co q-*oo

was aber

lim sup pn < lim inf pk p (12)
n-+ao fc-+oo

impliziert. Also konvergiert die Folge (mX^i- Weiters folgt aus (11) für alle k >1

p= lim pn<uk. (13)
n-* oo

Es ist interessant festzustellen, dass in (10) immer strikte Ungleicheit gilt. Dies ergibt sich

als Folgerung aus dem nachstehenden

Satz 2. Gibt es ein Polynom Pne^n mit m (PJ < Cn, wobei C~2n eine ganze Zahl ist, dann

gilt
C

/*2n(l+C-2n) -^
(1 + Q2n\ll(2n)

< C (14)
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Beweis: Aus

und 0 < C-2nPn{x)2 < 1 folgt

0 < P„(x)2" (1 - C-2"PB(x)2) < C™ L^j )T=r7. (15)-Y—•
¦1/ k+l

Setzt man nun /c C 2n und N 2n(k+l),so erhält man wegen (15) ein Polynom N-ten
Grades QN(x) P„(x)2*(l- C~2n^(x)2) aus &>N9 das auf dem Intervall [0,1] absolut durch

U1 + c2n)1/{2n)) ^
beschränkt wird. Damit ist Satz 2 bewiesen.

Korollar. Für alle n>l gilt

i-p;2n + [p;2n]pn
V < Plntoz*<\+1) <»n l+[p~2n] Tn'

}

Beweis: Zunächst wende man Satz 2 mit C \p~2*\~1,{2n) an. Bezeichne e 1 — u~2n

+ [p;2n], dann gilt

A*„2" — —
1 + C2" (i + [/c21)/C2n'

woraus aus dem Mittelwertsatz der Differentialrechnung

C 11 e

pn-p>pn- tA x ^2wU/(2w) >
(1 + C2n)m2n) 2 n p2n -'(1 + [/*„" 2n]) p~ 2n

folgt.
Um diesen Satz anzuwenden, betrachte man vorerst jene n, für die man un explizit berechnen

kann.

n Pn Pn(x)

1 1 x
2 2~x x(l-x)
3 (Ißlßr1 x(2x-l)(l-x)
4 2"1 x2(l-x)2
5 5~1/2 x2(2x-l)(l-x)2
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Für n 5 ist pl10 55 eine ganze Zahl Nach Satz 2 und seinem Korollar erhalt man
daher

P<(1 + 55r1/10 < 04472 < 5~112 < 04472136 (18)

Man sieht schon an diesem einfachen Beispiel, dass es nicht so einfach ist, em kleines C
zu erreichen Aus diesem Gesichtspunkt ist es daher nicht verbluffend, dass es fur pn eine
natürliche untere Schranke gibt, die allerdings aus dem Primzahlsatz

i ^(n)
hm 1

„-+00 n/log n

folgt (n (n) ist die Anzahl der Primzahlen < n

Satz 3. Es gilt p > 1/e und daher für alle n>l

M„>- (19)
e

Zum Beweis benotigt man folgendes Lemma

Lemma 3. Bezeichnet man mit V(n) das kleinste gemeinsame Vielfache der ersten n
natürlichen Zahlen 1,2, ,n, dann gilt

log V(n)
hm B v

=1 (20)

Beweis Wegen

flog"
V(n)= nPÜ^P

ist

P_n|_lo-/_l
logF(n)= £ \r-^-\\ogp= £ log/> *(_)

pm<n

der Tschebyscheffschen ^-Funktion gleich Der Primzahlsatz ist aber zu

hm 1

«-?oo n

äquivalent
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Beweis von Satz 3: Sei Pn(x) _T akxk ein Polynom aus &n mit m(Pn) pnn. (a0 muss 0 sein,

da sonst |/J(0)| \a0\ > 1 wäre.) Nun ist

H'-w^?X.?..**')*ii4nsbi>-

woraus zunächst

1orK(2«+1)

und schliesslich

1

p=hm iin>-

folgt, was zusammen mit der Ungleichung pn > p aus dem Korollar von Satz 2 die

Aussage von Satz 3 impliziert.

Abschliessende Bemerkungen

Die Problemstellung lässt sich ohne Schwierigkeiten auf den mehrdimensionalen Fall,
also auf Polynome in mehreren Variablen, verallgemeinern. Man erhält mit ganz analogen

Methoden dieselben Ergebnisse wie im eindimensionalen Fall.
Es bleibt noch die Frage offen, welchen Wert p tatsächlich annimmt. Aus dem Korollar
von Satz 2 lässt sich wenigstens ablesen, dass es, wenn man ein n sucht, für das un < p + s

gilt, sinnvoll ist, erst mit dem Grad n [— 3 löge] die Suche zu beginnen, da für n mit
pn< p + e das Korollar die Ungleichung 2ne(l + e2n) >pn(l — p~2n + [p~2n]) zur Folge
hat, die für n < [ — 3 log e] nicht unbedingt erfüllt sein muss, da die letzte Klammer sehr

nahe bei 1 liegen kann.
In diesem Zusammenhang sei erwähnt, dass eine ähnliche Fragestellung schon von
D. Hilbert [3] behandelt wurde. Er bewies mit Hilfe eines Gitterpunktsatzes von Minkowski,

dass für jedes reelle Interval [a, b] mit Länge b — a < 4 Polynome Pne^n existieren, die
die Abschätzung

jpn(x)2„x<(/„^y

mit einer Folge (ln)™= x, für die lim /„ 1 gilt, erfüllen, die Integrale also insbesondere
n-+oo

gegen 0 konvergieren. Spezialisiert man dies auf das Intervall [0,1] und berücksichtigt
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man, dass aus

\Pn(x)2dx<C2
o

immer m(Pn) < (n + 1) C folgt (siehe [4]), impliziert der Hilbertsche Satz p<lß.
Interessanterweise kann man mit dieser Methode nichts Besseres erzielen. K. Prachar [5] hat
nämlich gezeigt, dass es für Intervalle [a, b] mit Länge b — a > 4 keine Polynome Pne^n
geben kann, für die Folge

} P.W2 ix
0

gegen 0 konvergiert. Dass p tatsächlich kleiner als 1/2 ist, wird daher daran liegen, dass

die betrachteten Intervallgrenzen 0 und 1 ganzzahlig sind.
Abschliessend möchte ich noch erwähnen, wie ich auf diese Fragestellung gestossen bin.
Beim Studium des Beukerschen Beweises [2] der Irrationalität von C(2) und ((3) - der
erste Beweis der Irrationalität von £(3) stammt übrigens von R. Apery [1] - fällt auf, dass

man ihn vereinfachen könnte, wenn man für genügend kleine C ganzzahlige Polynome
Pne^n fände, die die Abschätzung m(Pn) < C" erfüllten. Insbesonders musste man C < 1/e
wählen können. Dies ist aber nach Satz 3 dieser Note nicht möglich. Die Frage nach der
Irrationalität beziehungsweise auch die nach der Transzendenz von £(n) kann daher nicht
mit dieser Methode gelöst werden. Für ungerade n ist dieses Problem ja nach wie vor
ungelöst.

M. Drmota, Techn. Universität Wien
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