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Abschidtzungen ganzzahliger Polynome
auf dem Intervall [0, 1]

1. Einleitung
Betrachtet man die ganzzahligen Polynome
Py, (x) = x"(1— x)" (1)

vom Grade 2n, so fillt auf, dass diese auf dem Intervall [0, 1] die Werte

B 1 2n 2
My, = 5) ()

als Maximum annehmen. Insbesondere konvergieren diese Maxima fiir n —» oo exponen-
tiell gegen 0. Es stellt sich nun die Frage, ob man ganzzahlige Polynome finden kann, die
ein kleineres Maximum besitzen, und wenn ja, wie weit man diese Werte aus (2) iiberhaupt
verbessern kann. Diese Fragestellung soll zunidchst einmal prizisiert werden. Dazu
bezeichne man fiir n = 1,2,... durch £, die Menge aller Polynome n-ten Grades

B(x)=a,x"+a,_;x""'+---+a, (a,#0) (3)

mit ganzzahligen Koeffizienten g, (k =0, 1,...n) und betrachte dazu die Grosse

1, = min (m(B)'", (4)
P,e?,
wobel
m(F) = max |B(x)| (%)
0<xx<1

das Maximum des Absolutbetrages von P,(x) auf [0, 1] bezeichnen soll. (Dass das Mini-
mum in (4) tatsdchlich existiert, wird im ndchsten Abschnitt gezeigt.)
Die Aussage (2) kann nun zu

1
< - 6
MZn—‘z ()
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umformuliert werden, und die oben gestellte Frage ist darauf reduziert, wie sich die pu, fiir
n— oo verhalten. Diese Fragestellung soll in dieser Note behandelt werden.

Im folgenden Abschnitt wird gezeigt, dass die Folge der u, gegen einen Grenzwert u
konvergiert, der die Abschiatzung

1
—<M<

\/5
erfiillt, wobei aber stets u, > u gilt. Die obere Schranke wird durch eine explizite Kon-

struktion bewiesen, wogegen die untere Schranke 1/e interessanterweise aus dem Prim-
zahlsatz folgt. Demnach gilt fiir jedes ganzzahlige Polynom P, e Z,

m(B) > (1) @

e

2. Schranken fiir g, und p

Zunichst muss sichergestellt werden, dass das Minimum in der Definition (4) existiert.
Lemma 1. Es gibt nur endlich viele Polynome B,€ 2, mit m(P,) < 1.

Beweis: Ist B(x) = a,x" + a,_,x"~ ! +... + a,, so lassen sich die Koeffizienten aus dem
linearen Gleichungssystem

n i \k ;
> (’—)akﬂ:(’—), i=01,...,n
k=0 \N n

berechnen, wobei die Koeffizientenmatrix ((j /n)")j,k=0, 1,...., €ine nur von n abhingige,
regulidre (Vandermondsche) Matrix ist. Da wegen |P,(j/n)| < 1 nur endlich viele Werte fiir
P,(j/n) in Frage kommen, gibt es daher nur endlich viele Polynome B, € Z, mit m(F) < 1.

Bemerkung: Man kann fiir die Koeffizienten a, auch folgende explizite Schranken ange-
ben:

2
Iakls2"k!(2), k=0,1,...,n. (8)

Da nidmlich m(P) < 1 jedenfalls m(P/) < 2n? impliziert (siche [4]) und die Koeffizienten
a, durch P®(0)/k! berechenbar sind, folgt (8) durch induktive Anwendung der erstge-
nannten Eigenschaft.

Fiir den Nachweis, dass die Folge (u,);>, konvergiert, sei folgende Eigenschaft voran-
gestellt.
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Lemma 2. Ist n > k > 2, und schreibt man n in der Form n = qk + r mit 0 <r < k, dann
gilt

1/(1+1)

M < P €))

Beweis: Sei B,(x) ein Polynom aus &, mit m(B) = u¥, dann gilt fiir Q,(x) = B(x)?x" aus
2,  m(Q,) <y, woraus aber

k 1/(1+1
fy < 0 < /09

folgt.
Damit ist der Beweis des folgenden Satzes nicht mehr schwer.

Satz 1. Die Folge (u,)X-,, definiert in (4), konvergiert gegen einen Grenzwert u, fiir den
fiir alle n > 1

e = U (10)
gilt.
Beweis: Es bezeichne zunachst

pu=liminfy,.

n—oo

Aus (9) folgt fiir jedes k > 2

lim sup p, < lim sup pl/*? = p,, (11)
n— oo g— ®
was aber
lim sup p, < liminf p, = p (12)
n— oo k—

impliziert. Also konvergiert die Folge (u,) ;. Weiters folgt aus (11) fiir alle k > 1

p=lIm p, < p. (13)

n—* oo

Es ist interessant festzustellen, dass in (10) immer strikte Ungleicheit gilt. Dies ergibt sich
als Folgerung aus dem nachstehenden

Satz 2. Gibt es ein Polynom Be 2, mit m(B,) < C", wobei C™*" eine ganze Zahl ist, dann
gilt

C
Han1 +Cc-2n) < W <C. (14)
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Beweis: Aus
0<x¥(1—x) < JA . 0<x<1)
=XUTYE kF ) k1 V5T
und 0 < C~?"P(x)* < 1 folgt
0<P(x)2"(1——C‘Z"P(x)2)<C2"" ——k— k——l—— (15)
=" " - k+1) k+1°

Setzt man nun k = C~2"und N = 2n(k +1), so erhdlt man wegen (15) ein Polynom N-ten
Grades Qy(x) = P,(x)** (1 — C~ 2" P,(x)?) aus Z, das auf dem Intervall [0, 1] absolut durch

C N
(o) 1o

beschrankt wird. Damit ist Satz 2 bewiesen.

Korollar. Fiir alle n >1 gilt

e
1+ [ 2  2n

H<Honquz2m+1) < Hn — (17)

Beweis: Zunichst wende man Satz 2 mit C = [y, "]~ /2" an. Bezeichne ¢ =1 — u, "
+ [u, 2"], dann gilt

o C2n e
Hy — = - -2n’
1+C™" (14 [, Doy >

woraus aus dem Mittelwertsatz der Differentialrechnung

c 1.1 ¢
(14 C*™YED ™ 2 u2r = (1 4 [u, 2P, 2"

Uy — U > Wy —

folgt.
Um diesen Satz anzuwenden, betrachte man vorerst jene n, fiir die man p, explizit berech-
nen kann.

noou, B (x)

1 1 b'e

2 2-1 x(1—x)

3 QR2VATY x@x—-1)(1—x)
4 271 x2(1— x)?

5 5-12 x2(2x —1)(1 — x)?
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Fiir n = 5 ist pus '° = 5° eine ganze Zahl. Nach Satz 2 und seinem Korollar erhilt man
daher

p<(1+ 5% 110 < 04472 < 57112 < 0.4472136. (18)

Man sieht schon an diesem einfachen Beispiel, dass es nicht so einfach ist, ein kleines C
zu erreichen. Aus diesem Gesichtspunkt ist es daher nicht verbliiffend, dass es fiir u, eine
naturliche untere Schranke gibt, die allerdings aus dem Primzahlsatz

. m(n)
lim =1
n-w h/logn

folgt. (m(n) ist die Anzahl der Primzahlen < n.)

Satz 3. Es gilt p > 1/e und daher fiir alle n > 1

1
o>~ (19)
e

Zum Beweis bendtigt man folgendes Lemma.

Lemma 3. Bezeichnet man mit V (n) das kleinste gemeinsame Vielfache der ersten n
natiirlichen Zahlen 1,2, ...,n, dann gilt

log V
lim 08 V() _

n-aw n

(20)

Beweis: Wegen

logn
Vi(n) = pgnp[@]
ist

1
log V() =3 [fg-g]logp= > logp = y(n)

p<n pm<n

der Tschebyscheffschen y-Funktion gleich. Der Primzahlsatz ist aber zu

, y(n)
im —— =

nsoo N

1

dquivalent.
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Beweis von Satz 3: Sei P,(x) = Y a, x* ein Polynom aus 2, mit m(P,) = u". (a, muss 0 sein,
k=1

da sonst |P,(0)] = |ay| = 1 wire.) Nun ist

1 2n 1 1
2"> P Zd s .a: > .
ha" 2 [R(0%dx = 3 (H,sza‘“’)kﬂ =V@en+1)

woraus zunachst

_log¥V(2n+1)
,u,,Ze 2n

und schliesslich

p=lim p, >~
e

n—*oo

folgt, was zusammen mit der Ungleichung pu, > u aus dem Korollar von Satz 2 die
Aussage von Satz 3 impliziert.

Abschliessende Bemerkungen

Die Problemstellung ldsst sich ohne Schwierigkeiten auf den mehrdimensionalen Fall,
also auf Polynome in mehreren Variablen, verallgemeinern. Man erhdlt mit ganz analo-
gen Methoden dieselben Ergebnisse wie im eindimensionalen Fall.

Es bleibt noch die Frage offen, welchen Wert u tatsachlich annimmt. Aus dem Korollar
von Satz 2 1dsst sich wenigstens ablesen, dass es, wenn man ein n sucht, fiir das p, < p + ¢
gilt, sinnvoll ist, erst mit dem Grad n =[— 3 log¢] die Suche zu beginnen, da fiir n mit
U, < u + € das Korollar die Ungleichung 2ne(1+ ") > u,(1 — u, *" + [1, *"]) zur Folge
hat, die fiir n < [— 3 log €] nicht unbedingt erfiillt sein muss, da die letzte Klammer sehr
nahe bei 1 liegen kann.

In diesem Zusammenhang sei erwdhnt, dass eine dhnliche Fragestellung schon von
D. Hilbert [3] behandelt wurde. Er bewies mit Hilfe eines Gitterpunktsatzes von Minkow-
ski, dass fiir jedes reelle Interval [a, bl mit Ldnge b — a < 4 Polynome P, € &, existieren, die
die Abschitzung

P.(x) dx < (l,, b n “)n

mit einer Folge (1), fir die lim [, =1 gilt, erfiillen, die Integrale also insbesondere

n-* o

D S O

gegen 0 konvergieren. Spezialisiert man dies auf das Intervall [0, 1] und beriicksichtigt
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man, dass aus

BP(x)?dx < C?

O ey

immer m(P,) < (n + 1) C folgt (siehe [4]), impliziert der Hilbertsche Satz u < 1/2. Interes-
santerweise kann man mit dieser Methode nichts Besseres erzielen. K. Prachar [5] hat
ndmlich gezeigt, dass es fiir Intervalle [a, b] mit Lédnge b — a > 4 keine Polynome P, € Z,
geben kann, fiir die Folge

J By dx
0

gegen 0 konvergiert. Dass u tatsdchlich kleiner als 1/2 ist, wird daher daran liegen, dass
die betrachteten Intervallgrenzen O und 1 ganzzahlig sind.

Abschliessend mochte ich noch erwidhnen, wie ich auf diese Fragestellung gestossen bin.
Beim Studium des Beukerschen Beweises [2] der Irrationalitdt von {(2) und {(3) — der
erste Beweis der Irrationalitdt von {(3) stammt {ibrigens von R. Apéry [1] — fillt auf, dass
man ihn vereinfachen kénnte, wenn man fiir gentigend kleine C ganzzahlige Polynome
P, € 2, finde, die die Abschitzung m(P,) < C" erfiillten. Insbesonders miisste man C < 1/e
wihlen konnen. Dies ist aber nach Satz 3 dieser Note nicht mdglich. Die Frage nach der
Irrationalitdt beziehungsweise auch die nach der Transzendenz von {(n) kann daher nicht
mit dieser Methode gelost werden. Fiir ungerade n ist dieses Problem ja nach wie vor
ungelOst.

M. Drmota, Techn. Universitit Wien
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