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A pair of general triangle inequalities

Dedicated to Murray S. Klamkin

In this note the two “dual” triangle inequalities

5 if max (A4, B, C) > 120°
1 1/b +1/c)(R; + R, + R
(/a+ 16+ 1/e)(Ry + R, + Ry) > {4 + 2/\/5 otherwise

and

@+b+c)(1/R; + 1/R, + 1/R3) >2(3 + 2./2)

are proved. (R, R,, R; represent the distances from P, a point of the interior or boundary
of triangle ABC, to its vertices 4, B and C, resp.) All numerical bounds cannot be
improved.

1. Introduction

In this note in section 4 we prove two “dual” inequalities linking the sides and the
distances from arbitrary interior or boundary point to the vertices of a triangle.
Before, in section 3, we give certain preliminary lemmata.

Finally, in section 5 we apply the results to a special point.

2. Notation

As usual for triangles, a, b, ¢ denote the sides, A, B, C the vertices, r, R, s the incircle,
circumcircle and semiperimeter, resp., and R,, R,, R; the distances from P, the point in
question, to the vertices 4, B and C, resp.

3. Lemmata

We start by proving the following inequality which is of interest for itself.

Lemma 1. Let 0 < x,y,z < 1 be real numbers such that x + y + z = 1. Then

U/ +xy+ VP + 1V +yz+ 2 +1/ /22 +z2x + X2 = 4 + 2/./3. (1)
Proof. We set w; = \/x2 + xy + y?, wy =/y* + yz + 2% wy = /22 + zx + x* and

thus have to discuss the function F(x,y,z,A) =1/w, + 1/w, + 1/w; + A-(x+y+z—1)
by the method of Lagrange-multipliers.
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Necessary conditions for critical points with 0 < x,y,z < 1 are

OF/ox = (— 1/2) - {2x + Y)W + 2x + 2w} + A =0 )
OF /0y =(—1/2)- {2y + x)/wi+ 2y +2)/w3} + 1 =0 3
OF 3z =(—1/2) {2z +x)w3 + 2z + w3} +1=0 4)

Adding the equations (2), (3) and (4) we get
A={(x+y/wi+ O +2/wi+(z+x)/wi}/2.
Inserting this expression in (2) we obtain (as y + z = 1 — x) the relation
x - 21w} =1/w3. &)
Similarly, from (3) and (4) there follow
y-X1/w}=1/w3 and (6)
z- 3 1/w? =1/w? resp. (7)
Coupling (5), (6) and (6), (7) we get
x2(? +yz + 233 = y*(2* + zx + x¥)? (8)
V2@ 4+ zx + x3)? =22 (% + xy + yH)>. 9)

As inequality (1) is symmetric we now may and do assume 0 < x <y <z < 1. We put
y=axand z=bx where 1 <a <b.
Then (9) becomes

a?(b* + b + 1) = b%(a* + a + 1). (10)

By differentiation it is easily checked that the function f (t) = (t* + t + 1)3/t* strictly
increases for t > 1.

Thus (10) yields a = b, i.e. y = z, as necessary for critical points in the interior of the
considered region.

Inserting this in (1) we have to prove

2wy +1/(y/3) =4 +2//3 where x+2y=1; ie.
23y =3y + 141y /3 =4+2//3 (11)

where 1/3 <y < 1/2 (since x < y < z).
The transformation y = 1/2 — w changes (11) to

gw):=23 /12w + 1+ 1/(1 —2w) 2 2. /3 + 1 (12)
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where 0 < w < 1/6. We have now that g’ (w) = 0 iff

Iw):= (12w? + 1)¥2 212, /3wl — 2w)® =:r(w).
Clearly, I (w) is strictly convex and r (w) is strictly concave on [0, 1/6] and, since 1(0) > r(0),
1(1/6) =r(1/6) = 8 \/5/9, and r'(1/6) = 0, we deduce the existence of a wy€(0, 1/6) such
that g(w) increases on (0, wy) and decreases on (w,, 1/6). This means that the absolute
minimum of g (w) on [0, 1/6] is min (g (0), g(1/6)), which readily proves (12).

For (1) to be proved we still have to consider the boundary of the region. Let e.g. z = 0.
Then y =1 — x and (1) becomes

h(x):=1//x* —x + 1+ 1/(1 —x) + 1/x = 4 +2/./3. (13)
By symmetry, we may and do restrict ourselves to the case 0 < x < 1/2. Since
h(1/2) =4 + 2/\/5, we have only to show that h(x) is falling on (0, 1/2), i.e. that b’ (x) < 0
on (0,1/2), i.e. that

(1—x?x2<2(x*—-x+1)>* on (0,1/2). (14)

Putting m:= x (1 — x) and noting 0 < m < 1/4 we deduce the validity of (14) from the
easily verified inequality

m* <4(1 —m)®, me(0,1/4). O

Next, we show the following distance-inequality for the incenter I.

Lemma 2.1/A1 + 1/BI + 1/CI =9 \/5 /2 s with equality iff the triangle is equilateral. (15)
Proof. In [1], p. 23, the inequality
Al + BI + CI <25//3 (16)

is established.
As the harmonic mean is never greater than the arithmetic one we get from (16)

1/AI + 1/BI + 1/CI = 9/(AI + BI + CI) = 9./3/2s.
In all inequalities there occurs equality iff the triangle is equilateral. O
Finally we prove a distance-inequality for the feet of the angle-bisectors w,, w, and w,.
Lemma 3. 1/w_+ 1/cy + 1/c;, > 6/s (17)

where ¢,, ¢, denote the distances from the foot of w, to 4 and B resp. Similar inequalities
hold for w, and w,.
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Proof. From elementary geometry the following relations are well-known:
¢, =ac/la+b), c,=bc/la+b) and w,=2abcos(C/2)/(a+ b).

Consequently, w, < 2ab/(a + b) < (a + b)/2.
For (17) we are thus done if we verify the sharper inequality

2@+b+)f(a+b)+(a+b(/cy +1/cy) + c(U/cy + 1/c,) > 12, e
2¢c/f(a + b) + {(a + b)/a + (a + b)/b}(a + b)/c + c(1/c; + 1/c,;) > 10. (18)
As clearly ¢ = ¢, + ¢,, we get c(1/c; + 1/c,) = 4.

Furthermore, also (a + b)/a + (a + b)/b = 4.
Therefore, (18) can be strengthened to

2¢/(a+ b) + 4(a+ b)/c>6 (19)
Putting x = c¢/(a + b) and noting that x <1 and x + 2/x >3 for x <1 we infer

(19). O

4. Main Results

We are now in the position to prove the announced general inequalities. Let P be a point
of the interior or the boundary of a triangle ABC.

Theorem 1

i) If one angle of the triangle is not less than 120°, then
(1/a+1/b+1/c)(R, + R, + Ry) > 5. (20)
ii) If all angles are less than 120°, then
(1/a + 1/b + 1/c)(R, + R, + Ry) > 4 + 2/, /3. 1)
Both bounds cannot be improved.

Proof.

i) From [2], item 12.55, it is known: If, say, A > 120° then R, + R, + R; > b + ¢. Thus,
(20) follows from

(lja+1/b+1/c)b+c)=b+c)a+ (b +c)(1/b+1/c)>5

which clearly holds true.
ii) It is known (e.g. [3], chapter 3) that R, + R, + R, is minimal if P coincides with
Torricelli’s (or Fermat’s) point, i.e. the point subtending 120° with each side.
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For typographical convenience let be now and further on x = R;, y = R, and
z = R;.

By the law of cosine we get a = /x> + xy + y?, etc.

Therefore, inequality (21) follows from lemma 1.

Taking triangles with a = b, ¢ & 2a and P = C shows, that “5” in (20) cannot be
improved.

Similarly the bound for (21): Take triangles with a = b, ¢ & a\/g and P=C. O

Next we prove the following “dual” of the previous theorem.

Theorem 2

@+b+U/R, + 1/R, + 1/R) >2(3 +2./2); ie.
1/R, + 1/R, + 1/Ry > (3 + 2./2)/s. (22)

The bound cannot be improved.

Proof. Let w = ¥ APB, u = ¥ BPC and v = « CPA.
Then 0 < u,v,w < 180° and u + v + w = 360°.

We then get ¢ = \/ y? + z> — 2yzcosu etc. For (22) we thus have to minimize the
function

F(x,y,z,u,0,w,1):= (/x* + y* — 2x ycosu + VY422 —2yzcosv
+ /22 4+ x2 —2zxcosw)(1/x + 1/y + 1/2) — A-(u + v + w — 360°).

From 0F/0u = 0, 0F/0v = 0 and OF/0ow = 0 we get immediately
yzsinu/a = xzsinv/b = x ysinw/c.

Particularly, xsinv/b = ysinu/a. This means geometrically that P lies on the angle-
bisector of C. (Indeed, the law of sines (applied to the triangles PBC and PCA)
yields sinu/a = sin(x PBC)/z and sinv/b = sin (% PAC)/z. Therefore, x sin(¥ PBC) =
ysin(¥ PAC), ie. P has equal distances from the sides a and b.)

Similarly it follows that P is on the angle-bisectors of A and B. Therefore the only
(interior) critical point for F is the incenter I. But from lemma 2 we have

1/Al + 1/BI +1/CI > 9./3/25

and as 9\/3/2 >3+ 2\/5, we are done.
For the boundary we have two cases.

1) e.g. w = 180°. Then P is on the side c. As before it can be shown, that the minimizing
P lies on the angle-bisector of C.

In lemma 3 we proved already 1/AP + 1/BP + 1/CP > 6/s. As 6 > 3 + Zﬁ we are
done.
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ii) e.g. w=0. Then u = v = 180°. Let be y < x.
In this case we have to deal with the degenerated “triangle” having the sidesc = x — y,
a=y+z,b=x+z
(22) then becomes

(x +2)(1/x + 1)y + 1/2) = 3 + 2/2. (23)
As y < x, (23) follows from
(x+2)Q/x + 1/2) 234+ 2./2, ie. 2z/x +x/z22./2, ie. (z/2—%?20.

Triangles with ¢~ 0, a=b=~x~3 + 2\/5 and P such that R, =R, =x2+ ﬁ,
Ry~1+ ﬁ show that the bound in (22) cannot be improved. O

Remarks. 1) Comparing inequality (21) with [2], item 12.55, i.e.
R, + R, + Ry = {(a® + b* + ¢* + 4F \/3)/2}1? (24)

it should be noted, that no general order can be given for the bounds of R; + R, + R,
in (21) and (24).

2) We leave it to the reader to derive inequalities obtained by application of inversion,
reciprocation and/or isogonal conjugation to theorems 1 and 2 (see [4], [5] and [6]).

5. A Special Point

Lemma 2 already states a special result.
Let P = G be the centroid. Then R, =2m,/3 etc., where m, etc. are the medians.
Theorem 1 then reads

(1/a + 1/b + 1/c)(m, + m, + m) > 15/2. (25)

Applying the process of median-duality (see [6] or [7]; i.e. if I (a,b,c,m,,m,,m,) > 0 is a
valid triangle-inequality then so is I (m,,m,,m_,3 a/4,3b/4,3 c/4) = 0) we get from (25)

1/m, + 1/m, + 1/m, > 5/s. (26)

This inequality was posed as a problem by the second author (see [8]). Triangles with
¢ = 0, a = b show that the bound “5” in (26) cannot be improved. O

W. Gmeiner, Millstatt; W. Janous, Innsbruck
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Aufgaben

Aufgabe 981. Man beweise oder widerlege folgende Aussage: Das Polynom
fX)=x>+x-—t

ist tiber Z irreduzibel, wenn t = + p", p Primzahl, neN und p" > 2.

O. Buggisch, Darmstadt, BRD

Losung. Die Aussage ist wahr.

Beweis. Sei t = + q und q eine Primzahlpotenz. Falls ein quadratisches Polynom das
Polynom x° 4+ x — ¢ teilt, so ist t = + 1. Der Ansatz

xS +x—t=x>+a,x+ag)(x®*+byx*+b,x+by), aga,,byb,,b,eZ

fiithrt ndmlich durch Koeffizientenvergleich und Elimination von b,,b,,b, sofort auf

3agal —al —a3=1

und aoal(a§—2a0)=f.

Deshalb sind a, und qa, teilerfremde Teiler der Primzahlpotenz g, woraus a, = + 1 oder
a, = + 1 folgt. In beiden Féllen schliesst man t = + 1.

Falls aber ein lineares Polynom x> + x — ¢ teilt, so besitzt x> + x — t eine ganzzahlige
Nullstelle, also t = &3 + £ fiir einen Teiler ¢ von ¢t; insbesondere ist ¢t gerade. Daraus folgt
t=+2

Bemerkung. Die Polynome x° + x + y sind Beispiele fiir den folgenden Satz von V. G.
SprindZuk (Reducibility of polynomials and rational points on algebraic curves, Sém de
Théorie des Nombres, Prog. Math. 12 (1981), 287-309). Sei f € Z[x, y}, absolut irreduzi-

0
bel (d. h. irreduzibel in C|x, y]), deg, f = 2, f(0,0) =0 und 5]: (0,0) #+ 0; dann ist fiir fast
X
alle Primzahlpotenzen q das Polynom f'(x,q) in Z [x] irreduzibel.

A. Clivio, Stanford, USA
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