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A pair of general triangle inequalities

Dedicated to Murray S. Klamkin

In this note the two "dual" triangle inequalities

[5 if max (A,B,C)> 120°
(l!a + l/b + l/c)(Rl+R2 + R3)>

otherw.se

and

(fl + b + c)(l/Rx + 1/R2 + 1/R3) >2(3 + 2^/2)

are proved. (Rl9 R2, R3 represent the distances from P, a point ofthe interior or boundary
of triangle ABC, to its vertices A, B and C, resp.) All numerical bounds cannot be

improved.

1. Introduction

In this note in section 4 we prove two "dual" inequalities linking the sides and the
distances from arbitrary interior or boundary point to the vertices of a triangle.
Before, in section 3, we give certain preliminary lemmata.
Finally, in section 5 we apply the results to a special point.

2. Notation

As usual for triangles, fl, b, c denote the sides, A9 B, C the vertices, r, R, s the incircle,
circumcircle and semiperimeter, resp., and Rx, R2, R3 the distances from P, the point in
question, to the vertices A, B and C, resp.

3. Lemmata

We start by proving the following inequality which is of interest for itself.

Lemma 1. Let 0 < x, v,z < 1 be real numbers such that x + y + z 1. Then

1/y/x2+ xy + y2 + 1/y/y2 +yz + z2 + l/yjz2 + zx + x2 >4 + 2/^/3. (1)

Proof. We set wx y/x2 + xy + y2, w2 y/y2 + yz + z2, w3 y/z2 + zx + x2 and
thus have to discuss the function F (x, y, z, k) l/wx + l/w2 + l/w3 + k-(x + y + z — 1)

by the method of Lagrange-multipliers.
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Necessary conditions for critical points with 0 < x, y, z < 1 are

8F/8x (- 1/2) • {(2 x + y)/w3 + (2x + z)/w3} + k 0 (2)

8F/8y (- 1/2) • {(2 y + x)/w3 + (2y + z)/w3} +k 0 (3)

dF/dz (- 1/2)- {(2z + x)/w3 + (2z + y)/w3} + k 0 (4)

Adding the equations (2), (3) and (4) we get

* i(x + y)/w3 +(y + z)/w\ + (z + x)/w3}/2.

Inserting this expression in (2) we obtain (as y + z 1 — x) the relation

x-Il/wf l/wi. (5)

Similarly, from (3) and (4) there follow

yZl/w? l/w3 and (6)

z.£l/wf l/w3 resp. (7)

Coupling (5), (6) and (6), (7) we get

x2(y2 + yz + z2)3 y2(z2 + zx + x2)3 (8)

y2(z2 + zx + x2)3 z2(x2 + xy + y2)3. (9)

As inequality (1) is Symmetrie we now may and do assume 0<x<y<z<l. We put
y ax and z bx where 1 < a < b.

Then (9) becomes

a2(b2 4- b + l)3 b2(a2 + a + l)3. (10)

By differentiation it is easily checked that the function f (t) (t2 + t + l)3/t2 strictly
increases for t > 1.

Thus (10) yields a b, i.e. y z, as necessary for critical points in the interior of the
considered region.
Inserting this in (1) we have to prove

2/wx + l/(y yß) >4 + 2/^/3 where x + 2y 1; i.e.

2/V3y2-3y+l + l/(y^3) > 4 + 2/^3 (11)

where 1/3 < y < 1/2 (since x < y < z).

The transformation y 1/2 — w changes (11) to

g(w):= 2y3A/l2w2 + l + 1/(1 - 2w) > 2^/3 + 1 (12)
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where 0 < w < 1/6. We have now that g' (w) i= 0 iff

l(w):= (12w2 + l)3'2 $ 12y3w(l - 2w)2 =:r(w).

Clearly, l(w) is strictly convex and r(w) is strictly concave on [0,1/6] and, since 1(0) > r(0),
1(1/6) r(l/6) 8 yß/99 and r'(l/6) 0, we deduce the existence of a woe(0,1/6) such
that g(w) increases on (0, vv0) and decreases on (w0,l/6). This means that the absolute
minimum of g(w) on [0,1/6] is min(ör(0), _/(l/6)), which readily proves (12).

For (1) to be proved we still have to consider the boundary of the region. Let e.g. z 0.

Then y 1 — x and (1) becomes

h(x):= 1/,/x2 - x + 1 + 1/(1 - x) + 1/x > 4 + 2/yfi. (13)

By symmetry, we may and do restrict ourselves to the case 0 < x < 1/2. Since
h (1/2) 4 + 2\yß9 we have only to show that h (x) is falling on (0,1/2), i.e. that W (x) < 0

on (0,1/2), i.e. that

(1 - x)2x2 < 2(x2 - x + 1)3/2 on (0,1/2). (14)

Putting m:= x(l — x) and noting 0 < m < 1/4 we deduce the validity of (14) from the

easily verified inequality

m4<4(l-m)3, me (0,1/4). D

Next, we show the following distance-inequality for the incenter I.

Lemma 2.1/A1 + 1/BI + 1/CI >9 ^3/2 s with equality iff the triangle is equilateral. (15)

Proof. In [1], p. 23, the inequality

AI + BI + CI <2s/yß (16)

is estabhshed.
As the harmonic mean is never greater than the arithmetic one we get from (16)

1/AI + 1/BI + 1/CI > 9/(AI + BI + CI) > 9yß/2s.

In all inequalities there occurs equality iff the triangle is equilateral. D

Finally we prove a distance-inequality for the feet of the angle-bisectors wa, wb and wc.

Lemma 3. l/wc + l/cx + t/c2 > 6/s (17)

where cx,c2 denote the distances from the foot of vvc to A and B resp. Similar inequalities
hold for wa and wb.
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Proof. From elementary geometry the following relations are well-known:

cx ö c/(a + b), c2 b c/(a + b) and wc 2ab cos (C/2)/(a + b).

Consequently, wc < 2ab/(a + b) <(a + b)/2.
For (17) we are thus done if we verify the sharper inequality

2(a + b + c)/(a + b) + (fl + b)(l/cx + l/c2) + c(l/cx + l/c2) > 12, i.e.

2c/(a + b) + {(fl + b)/a + (a + b)/b}(a + b)/c + c(l/cx + l/c2) > 10. (18)

As clearly c cx+ c2, we get c(l/cx + l/c2) > 4.

Furthermore, also (a + b)/a + (a + b)/b > 4.

Therefore, (18) can be strengthened to

2c/(a + b) + 4(a + b)/c>6 (19)

Putting x c/(a + b) and noting that x < 1 and x + 2/x > 3 for x < 1 we infer
(19). D

4. Main Results

We are now in the position to prove the announced general inequalities. Let P be a point
of the interior or the boundary of a triangle ABC.

Theorem 1

i) If one angle of the triangle is not less than 120°, then

(1/fl + l/b + l/c)(Rx +R2 + R3) > 5. (20)

ii) If all angles are less than 120°, then

(1/fl + l/b + l/c)(Rx +R2 + R3)>4 + 21yß. (21)

Both bounds cannot be improved.

Proof.

i) From [2], item 12.55, it is known: If, say, A > 120° then Rx +R2 +R3>b + c. Thus,
(20) follows from

(1/fl + l/b + l/c)(b + c) (b + c)/a + (b + c)(l/b + 1/c) > 5

which clearly holds true.
ii) It is known (e.g. [3], chapter 3) that Rx+ R2 + R3 is minimal if P coincides with

Torricelli's (or Fermat's) point, i.e. the point subtending 120° with each side.
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For typographical convenience let be now and further on x Rx, y R2 and

By the law of cosine we get a y/x2 + xy + y2, etc.
Therefore, inequality (21) follows from lemma 1.

Taking triangles with a b, c&2a and P C shows, that "5" in (20) cannot be

improved.
Similarly the bound for (21): Take triangles with a b, c « a yß and P C. D

Next we prove the following "dual" of the previous theorem.

Theorem 2

(fl + b + c)(l/Rx + 1/R2 + 1/R3) > 2(3 + 2yß); i.e.

1/R, + 1/R2 + 1/R3 > (3 + 2^2)/*. (22)

The bound cannot be improved.

Proof. Let w £ APB, u £ BPC and v £ CPA
Then 0 < u, v, vv < 180° and t. + t; + w 360°.
We then get c ^/y2 + z2 — 2 y z cos w etc. For (22) we thus have to minimize the
function

F (x, y, z, u, t>, vv, k): (y/x2 + y2 — 2 x y cos u + y/y2 + z2 — 2 y z cos v

+ y/z2 + x2 -2zxcosw)(l/x + 1/y + t/z) - k-(u + v + w - 360°).

From dF/du 0, dF/dv 0 and dF/dw 0 we get immediately

y z sin u/a x z sin v/b x y sin w/c.

Particularly, x sin v/b y sin u/a. This means geometrically that P lies on the angle-
bisector of C. (Indeed, the law of sines (applied to the triangles PBC and PCA)
yields sin u/a sin(£ PßC)/z and sinu/fc sin(£ PAC)/z. Therefore, xsin(£ PBC)
y sin (£ PAC), i.e. P has equal distances from the sides a Sind b.)

Similarly it follows that P is on the angle-bisectors of A and B. Therefore the only
(interior) critical point for F is the incenter /. But from lemma 2 we have

1/AI + 1/BI + 1/CI >9yß/2s

and as 9 yß/2 > 3 + 2 yß, we are done.
For the boundary we have two cases.

i) e.g. vv 180°. Then P is on the side c. As before it can be shown, that the minimizing
P lies on the angle-bisector of C.

In lemma 3 we proved already t/AP + 1/BP + 1/CP > 6/s. As 6 > 3 + 2y^2 we are
done.
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ii) e.g. vv 0. Then u v 180°. Let be y < x.
In this case we have to deal with the degenerated "triangle" having the sides c x — y,
a y + z, b x + z.

(22) then becomes

(x +- z)(l/x + 1/y + 1/z) > 3 + 2^2. (23)

As y < x, (23) follows from

(x + z)(2/x + l/z)> 3+ 2^/2, i.e. 2z/x + x/z >2yß9 i.e. (zyß- x)2 > 0.

Triangles with c*0, a h &3 + 2yß and P such that Rx R2 « 2 + yß,
R3 « 1 + yß show that the bound in (22) cannot be improved. D

Remarks. 1) Comparing inequality (21) with [2], item 12.55, i.e.

Rx+R2 + R3> {(fl2 + b2 + c2 + 4Fyß)/2}112 (24)

it should be noted, that no general order can be given for the bounds of Rx + R2 + R3
in (21) and (24).

2) We leave it to the reader to derive inequalities obtained by application of inversion,
reciprocation and/or isogonal conjugation to theorems 1 and 2 (see [4], [5] and [6]).

5. A Special Point

Lemma 2 already states a special result.
Let P G be the centroid. Then Rx 2ma/3 etc., where ma etc. are the medians.
Theorem 1 then reads

(1/fl + l/b + l/c)(ma + mb + mc) > 15/2. (25)

Applying the process of median-duality (see [6] or [7]; i.e. if I(a,b,c,ma9mb,mc) > 0 is a
valid triangle-inequality then so is I(ma,mb,mc93a/493b/493c/4) > 0) we get from (25)

l/ma + l/mb+ l/mc > 5/s. (26)

This inequality was posed as a problem by the second author (see [8]). Triangles with
c % 0, a b show that the bound "5" in (26) cannot be improved. D

W. Gmeiner, Millstatt; W. Janous, Innsbruck
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Aufgaben

Aufgabe 981. Man beweise oder widerlege folgende Aussage: Das Polynom

/(x) x5 + x~t
ist über _Z irreduzibel, wenn t ±pn, p Primzahl, neN und pn > 2.

O. Buggisch, Darmstadt, BRD

Lösung. Die Aussage ist wahr.

Beweis. Sei t + q und q eine Primzahlpotenz. Falls ein quadratisches Polynom das

Polynom x5 + x — t teilt, so ist t ±1. Der Ansatz

x5 + x — t (x2 + ax x + fl0)(x3 + b2x2 + bxx + b0), a0,ax,b0,bx,b2eZ

führt nämlich durch Koeffizientenvergleich und Elimination von b0,bl9b2 sofort auf

3fl0fl2 — a\ — fl2, 1 und aQax(a\ — 2a0) t.

Deshalb sind a0 und ax teilerfremde Teiler der Primzahlpotenz q9 woraus a0 ± 1 oder

ax ± 1 folgt. In beiden Fällen schliesst man t + 1.

Falls aber ein lineares Polynom x5 + x — t teilt, so besitzt x5 + x — t eine ganzzahlige
Nullstelle, also t £5 + f für einen Teiler £ von t; insbesondere ist t gerade. Daraus folgt
t= ±2.

Bemerkung. Die Polynome x5 + x ± y sind Beispiele für den folgenden Satz von V. G.

Sprindzuk (Reducibihty of polynomials and rational points on algebraic curves, Sem de

Theorie des Nombres, Prog. Math. 12 (1981), 287-309). Sei fs 1[x,y], absolut irreduzi-
9/

bei (d.h. irreduzibel in C[x,y]), degx/ 2, f(0,0) 0 und —(0,0) + 0; dann ist für fast
dx

alle Primzahlpotenzen q das Polynom f(x,q) in Z [x] irreduzibel.

A. Clivio, Stanford, USA
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