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Eine Anwendung des Gaußschen Integralsatzes

Mittels einer geeigneten komplexen Formulierung des Gaußschen Integralsatzes für die
Ebene werden Formeln für die Trägheitsmomente [1 *] eines Dreiecks hergeleitet, die in
einfacher Weise lediglich von den Eckpunkten abhängen.
Mit G werde ein beschränktes Gebiet in der x, y-Ebene bezeichnet, dessen Rand aus einer
einfach geschlossenen positiv orientierten stückweise stetig differenzierbaren Kurve 9G
besteht. Für ein stetig differenzierbares Vektorfeld

(m, v): G-»JR2

gilt der Gaußsche Satz:

l{^+^)dxdy-L(udy-vdx)'

und entsprechend erhält man für das Vektorfeld (v, — u)

l{t-^)dxdy-L{udx+vdy)-
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Die Verknüpfung dieser beiden Formeln, indem man

8 1/8 8
/___« + ,„, z=x + iy, -^-^-

setzt, fuhrt zu der Formel

- U^dxdy= S f(z)dz, (1)
l G OZ ög

die offensichtlich fur jede stetig differenzierbare Funktion / G-+<£ gilt

Bemerkung Fur eine holomorphe Funktion / ist (aufgrund der Cauchy-Riemannschen
Differentialgleichungen)

dz dz' 8z

Im folgenden bezeichne D ein Dreieck mit Flächeninhalt \D\ und entgegen dem

Uhrzeigersinn angeordneten Eckpunkten zx, z2, z3

Durch Wahl von f(z) z in Formel (1) erhalt man

\D\ §dxdy=%- \zdz
D Z 6D

Die Gerade durch die Punkte a und b (a + b) wird dargestellt durch

z(b — a) (b — ä)z + äb — ab (2)

Deshalb ist

b
_ b—ä b

J z dz J z dz | (fr — fl) (b + fl),
a O fl fl

so dass

I-D | — [(z2 - zx)(z2 + zx) + (z3 - z2)(z3 + z2) + (zx - z3)(zx + z3);

oder

\D\ - [zx(z2 - z3) + z2(z3 - zx) + z3(zx - z2)\ (3)
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Anwendung von Formel (1) auf f(z) z3 und Benutzung von (2) und (3) ergeben

— \\z2dxdy=4 J z3dz ^^(z$-zl) +^^(z$-z$)+^^
l d eo Z2 — Zx Z3 — Z2 Zx—Z3

zx — z3 z2 — zx

4\D\ z\ 4\D\
|

z% 4\D\
(zx-z3)(zx-z2) i (z2-z3)(z2-zx) i (z3-zx)(z3-z2) i

—— (z\+ z\ + z\ + zxz2 + zxz3 + z2 z3).

Es folgt

\\ z2 dx dy —- [(zx +z2 + z3)2 -zxz2- zx z3 - z2 z3]. (4)
D O

Durch Vergleich der Imaginärteile in (4) gelangt man zur

Formel für das Deviationsmoment von D

JJ x y dy dy -— Im [(zx + z2 + z3)2 -zxz2- zx z3 - z2 z3].
D IZ

Anwendung von Formel (1) auf

d2H(z)
f{Z) Z-d?->

wobei H(z) /i(z)(z — z^){z — z2){z — z3) mit holomorphem h: £>->C ist, ergibt

2 „. d3H(z) _ rf2H(z)
yjf2 rf_3 ^„j;=Jz „z. (5)
I D az BD «z

Mit Bezug auf (2) erhält man durch partielle Integration unter Beachtung von
H(z1) H{z2) 0

1 zH"{z) dz ^-it [___'(_)£ - C__?—__lV jf H'(_) „z
Z! 22 ZX \Z2~~Zl/ *1

Z2_Zl-(z2H'(z2)-z1H'(z1)).
Z>-Zi
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Durch Verwendung der entsprechenden Werte fur die Integrale längs der anderen Seiten

von D ergibt sich

J zHf\z)dz zxH\zx)(^^-^^ + z2H\z2)( + z3H'(z3)(
SD \ZX—Z3 Z2-Zx)

und weiterhin mit Heranziehung von (3)

I zW{z)dz ^{ Z'H'(^ + Z~^'^ + WJ
qd i \(zx-z3)(zx-z2) (z2-zx)(z2-z3) (z3-zx)(z3-z2)

Setzt man die rechte Seite in (5) ein und beachtet die Definition von H, gelangt man zu
dem Ergebnis

d3

tfz^(h(z)(z-zx)(z-z2)(z-z3))dxdy 2\D\(zxh(zx) + z2h(z2) + z3h(z3)) (6)
d dz

Durch Anwendung von (6) auf h(z) 1 folgt die

Formel fur den Schwerpunkt von D

1

—- JJ z dx dy f (zx +z2 + z3) (7)
IDI D

Die Anwendung von (6) auf h(z) z + (zx + z2 + z3) ergibt die

Formel fur das Trägheitsmoment von D bezüglich der Achse durch den Nullpunkt senkrecht

zu D

JJ|z|2Jxdy -^-(|z1|2 + |z2|2 + |z3|2 + |z1+z2 + z3|2) (8)
D 1--

Verbindet man (4) und (8), gewinnt man die

Formeln für die Trägheitsmomente von D bezüglich der reellen und der imaginären Achse

tfy2dxdy ^-[(\zl\2 + \z2\2 + \z3\2 + \z1+z2 + z3\2)-2R(zl,z2,z3)],

tfx2dxdy=l-^[(\zi\2 + \z2\2 + \z3\2 + \zl+z2+z3\2) + 2R(zi,z2,z3)]
D Z<\

mit

R(zx, z2, z3) Re [(zx + z2 + z3)2 -zxz2- zx z3 - z2 z3]
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Durch die Translation zv-+z — z0 und mit der Bezeichnung

C:=|(z1+z2 + z3)

für den Schwerpunkt von D folgt aus (8) die

Formel für das Trägheitsmoment von D bezüglich der Achse durch z0 senkrecht zu D

tf\z-z0\2dxdy ^-(\z1-z0\2 + \z2-z0\2 + \z3-z0\2) + l\D\\(-z0\2,
D 1--

(9)

insbesondere bezüglich der Achse durch den Schwerpunkt

ft\z-C\2dxdy ^(\z1-C\2 + \z2-£\2 + \z3-t;\2).

Aus

|z_C|2 |(z_Z())_(C_Zo)|2

|z - z0|2 + |C - z0\2 - (z - z0)(C- z0) - (z - z0)(C - z0)

erhält man aufgrund der sich aus (7) ergebenden Formel

ft(z-z0)dxdy (t-z0)\D\
D

durch Integration

ft\z-!;\2dxdy tf\z-z0\2dxdy + \t-z0\2\D\-2\{-z0\2\D\,
D D

also den Steinerschen Trägheitssatz [2*]

ft\z-z0\2dxdy ti\z-{;\2dxdy + \t;-z0\2\D\.
D D

H. Herold, Fachbereich Mathematik,
Universität Marburg/Lahn

ANMERKUNGEN

[1*] Bezüglich der verwendeten physikahschen Begriffe und Grundtatsachen aus der Mechanik sei etwa verwiesen
auf Naas J und Schmid H L Mathematisches Wörterbuch, Teubner Stuttgart, Band II

[2*] Benannt nach J Steiner, auf dessen geometnsche Untersuchungen dieser Satz zurückgeht (siehe Jacob
Steiner's Gesammelte Werke, zweiter Band, Berlin 1882, S 106ff)
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