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Star polytopes and the Schlafli function f(«, 8, y)

The latter half of this article fills some gaps in Schlifli’s very condensed treatment of the
volume of a spherical simplex.

1. The Kepler-Poinsot polyhedra

For any rational number § > 2, there is a regular n-gon of density d, conveniently denoted
by its Schlafli symbol {2}. For instance, {3} is the pentagram, whose five sides surround
its centre twice. Analogously in 3-space, for suitable rational numbers p and g, there is
a regular polyhedron {p, q} having face {p} and vertex figure {¢}. For instance, {3, 5} is
the small stellated dodecahedron, whose faces consist of twelve pentagrams, five at each
of its twelve vertices. A famous mosaic, made in 1420 by Paolo Uccello [12, p. 20}, is
evidently intended to be a picture of this star polyhedron. {%, 5} was rediscovered by J.
Kepler, whose drawing of it is reproduced in Figure 1. He discovered also the great
stellated dodecahedron {3,3}, which has three pentagrams at each of its twenty vertices.
L. Poinsot reciprocated the stellated dodecahedra to obtain the great dodecahedron {5,3}
and the great icosahedron {3,3} [S, pp. 96, 114]. However, the former was actually drawn
in 1568 by Jamnitzer [8 a, Plate C.V.].

The planes of symmetry of any regular polyhedron { p, q} decompose the concentric unit
sphere into a pattern of spherical triangles [S, pp. 109—-111]. If O is the centre, such a
«characteristic triangle» ABC is determined by diameters OA, OB, OC which contain
respectively a vertex, the midpoint of an incident edge, and the centre of an incident face.
Therefore its angles are A = nn/q, B=n/2, C = n/p and its area is

4,,=A+B+C—n=Q2p+ 2q—pqg) n/2pq.
When p and q are integers, as they are for the five Platonic solids {3, 3}, {4, 3}, {3, 4}, {5, 3},
and {3, 5}, the characteristic triangle is a fundamental region for the symmetry group,
whose order is accordingly

g=4n/(A+B+C—-n)=8pq/2p+2q9—pq).

This order is 120 for the icosahedron {3, 5} and for the dodecahedron {5, 3}. In fact, their
common symmetry group is

C, x As.
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The four Kepler-Poinsot polyhedra
{3, 5% {5:3h 13,35 (3,3

all have the same 15 planes of symmetry as those two «pentagonal» solids, but their 120
characteristic triangles, being larger, cover the whole sphere a number of times, say d
times, where d is naturally called the density of the star polyhedron {p,q}. By comparing
the areas [5, p. 111}, we obtain

A4 15
d=-24=""(2p+2q—pqg), 1.1
As,s pq 1)

which is

3 for {3, 5}, and {5,3},
7 for {3, 3}, and {3,3}.

\\\\\)

L

1N

Figure 1 Figure 2

Figure 2, in which the shaded spherical triangle ABC is made up of three small triangles,
illustrates the density 3 for {2, 5}. Mirrors AC and BC, inclined at 27/5, reflect the vertex
A (where the angle is /5) into the successive vertices of a pentagram AA' A" A™ A" which
is one face of {2, 5}, projected onto the circumsphere. The third mirror AB or AA', being
one side of the pentagram, reflects this face into a neighbouring face.

2. The Schlifli-Hess polytopes

Analogously in 4-space, there is, for suitable rational numbers p, g, r, a regular polytope
{p, ¢, r} having facet (or cell) { p, q} and vertex figure {q, r}. For instance [5, pp. 136, 191},
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L. Schléfli discovered the six convex polytopes:

the 5-cell {3,3,3}, the 8-cell {4,3,3}, the 16-cell {3,3,4},
the 24-cell {3,4,3}, the 120-cell {5, 3,3}, the 600-cell {3, 3, 5}

[4, pp- 403, 404; 5, frontispiece].
Schlifli [10, pp.297-298; 11, pp. 184—186, 267] discovered also four of the ten regular
star-polytopes, namely two pairs of reciprocals:

the great stellated 120-cell {2,3,5},
the grand 120-cell {5,3,3},
the grand 600-cell {3,3,2},

the great grand stellated 120-cell {3, 3,3},

[5, p. 294; 6, p. 46]. These four were rediscovered about thirty years later by E. Hess [8],
who added

the stellated 120-cell 2,5,3},
the icosahedral 120-cell {3,5,3},
the great 120-cell {5,2,5},
the grand stellated 120-cell 3,53},
the great grand 120-cell {5,2, 3},

the great icosahedral 120-cell {3,%, 5}.

Schlifli failed to recognize these six because, although he had rediscovered {2, 3} and
{3,3}, it seems that nobody had ever shown him a model of {2, 5} or {5,2} (which have
12 vertices, 30 edges and 12 faces) and he believed Euler’s formula to be necessary for the
existence of a polyhedron; accordingly the symbol {p, ¢,r} for a polytope could not admit
the numbers 5 and 2 side by side!

The hyperplanes of symmetry of any regular polytope {p, ¢, r} decompose the concentric
unit 3-sphere into a pattern of spherical orthoschemes [5, pp. 130, 137]. If O is the centre,
such a «characteristic orthoscheme» ABCD is determined by diameters OA4, OB, OC, OD
which contain respectively a vertex, the midpoint of an incident edge, the centre of an
incident face, and the centre of an incident facet. Therefore its edges AB, BC, CD are
mutually perpendicular, and the dihedral angles along its six edges CD, AD, AB, AC, BC,
BD are

(CD) = n/p, (AD) = n/q, (AB) = n/r, (AC) = (BC) = (BD) = /2.

When p,q,r are integers, as they are for the six convex polytopes, the characteristic
orthoscheme is a fundamental region for the symmetry group, whose order is the ratio
of the volumes of the whole 3-sphere and the orthoscheme. This order [5, p.153] is

120% = 14 400
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for the 120-cell {5, 3, 3} and for the 600-cell {3, 3, 5}, and also for all the ten star polytopes,
which share the same sixty hyperplanes of symmetry [5, p. 266]. The 14 400 characteristic
orthoschemes of the star polytopes, being larger than those of the 120-cell, cover the
3-sphere a number of times, say d times, where d is naturally called the density of the
star-polytope {p, q,r}. Thus d (Schléfli’s h) can computed as the ratio of the volumes of
the characteristic orthoschemes for {p, q,r} and {5, 3, 3}.

To carry out this computation, we investigate, as Lobachevsky and Schlifli did, the
volume of the general 3-dimensional orthoscheme [7,§2], whose dihedral angles are

(CD) = a, (AD) = B, (AB) =y, (AC) = (BC) = (BD) = n/2,

as in Figure 3.

Figure 3

3. The 3-dimensional orthoscheme

In any kind of 3-space, the shape of a tetrahedron is determined by its six dihedral angles.
If the space is spherical (or elliptic, or hyperbolic), these dihedral angles determine its
shape and size. In particular, if the consecutive edges AB, BC, CD are mutually orthogo-
nal, the tetrahedron is an orthoscheme (see Figure 3). It is determined by the angles a, S,
y along the edges CD, AD, AB, while the remaining edges AC, BC, BD have right dihedral
angles. Let us simply call it

(o B, y),

with the understanding that it could equally well be called (y, S, «) [10, p.258; 11, p. 248].
If the 3-space is spherical (or elliptic), the dihedral angles satisfy

sina siny > cos f3.
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The edges and face-angles can be computed with the help of a triangular scheme of
numbers

(—-1,-1) 0,0 1,1 (2,2) (3,3) 449
(-1,00 O, 1) (1,2) (2,3) (3,9
(-1 0,2 1,3 (2,9
(-1,2) (0,3) (1,4
(-1,3) (0,4
(—1,4)

where (s,s) = 0, (s, s + 1) =1; one of the numbers (s — 1, s + 1) in the third row can be given
any convenient positive value and the rest of them are then determined by the equations

(—1,1)(0,2) = sec?a, (0,2) (1,3) = sec? B, (1,3) (2,4) = sec?y. (3.1)

The remaining rows are given by the formula

(=D (s+1,9-1
B (s+1,t—1)

(s,t) (3.2)

which is a consequence of the symmetrical rule
(¢, u) (5,0) + (u,5) (£, 0) + (5, 8) (u,0) =0
[5, p. 160; 3, p.204; 6, p. 56].
All the trigonometric functions of the angles and edges of the spherical orthoscheme are
very simply expressible in terms of these two-digit symbols. In particular, the edges

a=CD, b=AD, c= AB,

which carry the dihedral angles «, f, y, are given by

sec’a = (———zlj’_%zz)’{), sec2b =(—1,3)(0,4), sec’c= L_——l(’l—l)z()?—’ﬂ (3.3)
or
, _(—-1,4) 5 __(—1,4) " ‘_(—1,4)
tan“a = 1.2 tan“b = ——————(0’3) , tan“c = a4 (3.4)

The limiting case when the spherical orthoscheme becomes Euclidean is given by
(—1,4) =0, (3.5)

which implies a=b=c¢ =0.
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The one degree of freedom in our choice of the numbers (s —1,s + 1) may naturally be
used to split the product (0,2) (1, 3), so that

0,2) =(1,3) = secp.
Then, by (3.1),

(—=1,1)=sec’acosf, (2,4)=cospf sec?y,
and by (3.2),

(=1,2) =tan’a, (0,3)=tan?p, (1,4)=tan?y,

sino — cos? sin®y — cos? B
(—173)= 2 ’ (0’4)= 2 >
cos“ o cos f8 cos“y cosfi
sin®a sin?y — cos? B
—1,4) = ) 3.6
( ) cos?a cos?y (3.6)
Using this notation, we have
cosa sina cosy cosh cosa cos ff cosy
= » CO8DL = s
Jsin?a — cos? B Jsin?a — cos? B /siny — cos? 8
siny cosa.
cosc = _ (3.7
/sin?y — cos? B
[11, p. 156]. Also, by (3.5) and (3.6), a = b = ¢ = 0 when
sina siny = cos . (3.8)

4. The Schlifli function f (x, B, y)
Schléfli [10, p.235; 11, p.167, 234; 2, pp.285-288] investigated the volume S of the
general spherical tetrahedron, taking as his unit the volume of the orthant Gn, 37, 37)

(that is, one-sixteenth of the whole 3-sphere). He showed that S satisfies the differential
equation

4
ds= > 3ldi,

where the summation is over the six edges | which carry the dihedral angles 4.
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In the case of the orthoscheme (a, f, y), with volume f(a, f,y), this becomes
df(oc,ﬁ,y)=%(adoc+bdﬂ+cdy). 4.1)

(Schléfli, in his earlier paper [11, pp. 156—163], used a different unit of measurement and
thus eliminated the coefficient 4/n2.)

In the simple case when f =1n, we have a spherical «isphenoid> («, 7, y) which joins
arcs AB =c =a and CD = a = y of two polar great circles, so we can expect the volume
to be a numerical multiple of the product ca = ay. In fact,

4 4
df (a,3m,7y) = ;(yda +ady) = ;t;d(ay)

and, since f(3n, 37, tn) =1,
{ 4
flazmy) = il 4.2)

When one of «, f, y is changed to its supplement, f(, f, y) changes in an easily described
manner, suggested by another part of Schlifli’s work [10, p. 240; 11, p. 238]. The three rays
issuing from A4 along the edges AB, AC, AD of the orthoscheme S = ABCD (see Figure 3)
will meet again in the antipodes A’ of 4 and determine another orthoscheme S, = A’BCD,
of type (r — a, B, ). The trihedron S U S, intersects the equatorial 2-sphere of the poles
A and A’ in a spherical triangle with angles 8,7, 5 7 (these being the dihedral angles along
the edges AD, AB, AC). The volume of the trihedron is the same fraction of the whole
3-sphere as the area of the spherical triangle is of the equatorial 2-sphere, so it amounts
to 16 (f + y — 3 n)/4n orthants:

4

and, in particular,

2
f(%n,ﬂ,y)=;z—(ﬂ+y)~1- (4.4)

Similarly, the three rays issuing from B along the edges BA, BC, BD of S will meet again
is the antipodes B’ of B and determine another orthoscheme S, = AB'CD, of type (n — a,
n — B, 7). The same reasoning as before, applied to the trihedron S U S,, gives
4
f(“,ﬂ,)’) +f(7l' — o —ﬂsy) =7_'Cy

When « is replaced by n — «, this combines with (4.3) to give

4
f(a,ﬁ,y)—f(oc,n—ﬁ,y):—;—l (45)

Schlifli found also some remarkable connections between (a, /3, 7/3), (2a,a,7/3) and
(o, 201, cx).
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If B =y =mn/3, (3.7) yields

sin o

COSd = —r———eee 4.6
J4sin?a —1 (4.6

By (4.1), for this value of q,

4
df(oc,%,g):?ada. 4.7)

If, instead, f =2« and y = «, (3.7) yields

sino coso sino
Jsin?2a —cos?a /4 sin?o —1

cosa =

as in (4.6), and

cos? o cos2a cos2a 2sin? a

cosbhb = —1=2cos?’a—1=cos2a,

sin?20 — cos?a  4sin*a —1  4sinZa —1
whence b = 2a. Since y = «, we have also ¢ = a, and

4 4
df(oe,2a,0) = = {ada +2ad(2a) + ada} = ;5-6adoc = 6d f(x, /3, n/3).

Thus
[, 20,0) =6 f (o, /3, 7/3) (4.8)

[11,p.161(21)]. No constant needs to be added since, by (3.8), both sides of the equation
(4.8) become zero when 3sin?o =1.

In the case of f(2a,a,7/3), we must replace, in (3.7), « by 2a, f by a, and y by 7/3
obtaining

sin2« sina
J4sin?20 —4dcos’a  /4sin?a —1

cosa =

as in (4.6), and

CcOs2 0o COS o cos2o
3 . &= % 2
\/sm22fx——cos2a\/4sm2cx—l 4sin®o —1

cosb =

whence b = 2a again, and

dfRQa,a,7/3) =ad(2a) + 2ada = 4ada = 4d f (a,7/3 7/3).
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Thus

fQRoa,n/3) =4 f(x,7/3,7/3). 4.9)

[10,p.266; 11,p.160(17)]. Again both sides vanish when \ﬁ sin o =1.

Equations (4.8) and (4.9) are two cases of an n-dimensional result [10, p. 267; 11, p. 256]
which is relevant to the theory of (Minowskian star polytopes [1, p. 22] or <hyperbolic star
honeycombs> [3, p.210]. H.E. Debrunner [7] has discovered a geometric approach to
these formulae. The three-dimensional case may be described as follows.

In Euclidean or non-Euclidean 3-space, a regular tetrahedron with dihedral angle 2« is
decomposed by its six planes of symmetry into 4! = 24 orthoschemes («, 3, 5). Of these six
planes, two join one edge of the regular tetrahedron to the midpoint of the opposite edge,
and vice versa, decomposing the tetrahedron into 4 orthoschemes (a, 2a, ). On the other
hand, three of the six planes join one vertex to the three medians of the opposite face,
decomposing the tetrahedron into 6 orthoschemes (2a, «, ). Since 24 =4 x 6, each

(a, 20, ) can be decomposed into 6(a, 3, 3)’s, and each (2a, «, 3) into 4.

5. Rational volumes

Although Schlifli’s equation (4.1) cannot be integrated in terms of elementary functions,
something remarkable happens when

cos?a + cos? B + cos?y =1 (5.1)
[10,p.263; 11, pp. 159, 175, 260]. In such cases (3.7) becomes
a=in—a, b=p, c=in—y

and thus (4.1) becomes

df(a,ﬁ,y)——-%{(%n—a)da+ﬁdﬂ+(%n—y)dy}
(D2
T n n n n n n)

Therefore, when (5.1) holds,

i -(-2)-(-2)

1 :
No constant needs to be added, since ifa =+ y = 5 n, (4.4) yields

1 2 1 (2B} 2BV
(gr)=rwen-1=0-3{(%) -0~ (I}
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We know [5, p. 109] that the only solutions of (5.1), in terms of acute angles commensura-
ble with 7, are the three permutations of 7/4, n/3, n/3 and the six permutations of 27/5,
n/5, /3 [10, pp. 268 —-269; 11, pp. 159-160, 180—181]. These yield the five special volumes

T AT 1 TAT 1 2n T w 1
f(z’s’s) =2 f(wa) =7 f(?’§’§)=5'2'§’
2n T =w 1 m2nw 19
o)==, s ) == 2
f(S ’3’5) 45 f(S 5 3) 225 (5:2)
By (4.3) and (4.9),

mTT 2n mo®w 4 (2n = 2 2n wom T TR
PR el il IS Bl Bl d PR =4 il M
f<3’3’3) f(3’3’3) n(3 2) 3 40 f<3 33) f<333)

therefore

A A 2
f(§’§’§)=i§' (5.3)

By (4.9),
TR 1 2 nm 1
f(§’§’§>=2f(?’§’§>_§66’
and by (4.8),
n2n m A A4 1
f(?’?’§)=6f<§’§’§)“i?6'
By (4.3) and (5.2),
f4n 2 n _4 21c+7z T fn27z7r_14 19_191
5’5’3 z\5 3 2 5°5°3) 15 225 225°

whence, by (4.9) again,

2n w =w 191
iR Bl 54
f(S ’3’3) 900 4]
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[10, pp. 268269 (9); 11, pp. 160(20), 181 (19)]. By (4.5) and (4.8),

2r © 2n 2n 4n 2=¢m 4
f(?’s"s‘>—f<??’?)+‘s“2

—6f 2 W 6_191 6_11 (5.5)
- 5’3’3/ 5 150 5 150 '

[10,p.269(11); 11, pp. 162(23), 181 (21)].
Also, by (3.8), there is one trivially rational volume:

T TTT
(555)-o o

And of course there are infinitely many rational instances of (4.2) and (4.4).

6. The ten star polytopes and their densities

We can now use Schlifli’s formula

f@p, ) o (mnw
= s, - (p’ 7 r)

[11,p. 186; p.287] to do, for all the ten star polytopes, what he did for his four, namely,
to compute their densities [1; 5, pp. 284, 294]:

4 for {2,5,3} and {3,53},
6 for {53,5},
20 for {3,3,5} and {5,3,3},
66 for {3,5,3},
76 for {5,3,3} and {3,3,5},
191 for {3,3,3} and {3,3,3}.
After mentioning the honeycombs {4, 3, 3,4}, {3, 3,4, 3}, {3,4, 3, 3} [5, p. 153] which tessel-
late Euclidean 4-space, Schlifli {11, p.187] unhappily added two «star honeycombsy,
{5, 3,3, %} and {%, 3,3, 5}, which he declared to have density 191, whereas their density is

really infinite [1, pp. 509, 521; 5, pp. 264, 285]. This is analogous to an attempt to tessellate
the Euclidean plane with pentagons so as to obtain a «tessellation» {5, 1—;’} [4,p.63].

H. S. M. Coxeter, Department of Mathematics, University of Toronto
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Eine Anwendung des Gaullschen Integralsatzes

Mittels einer geeigneten komplexen Formulierung des GauBBschen Integralsatzes fiir die
Ebene werden Formeln fiir die Tragheitsmomente [1*] eines Dreiecks hergeleitet, die in
einfacher Weise lediglich von den Eckpunkten abhidngen.
Mit G werde ein beschrinktes Gebiet in der x, y-Ebene bezeichnet, dessen Rand aus einer
einfach geschlossenen positiv orientierten stiickweise stetig differenzierbaren Kurve 0G
besteht. Fiir ein stetig differenzierbares Vektorfeld

(u,v): G—>R?

gilt der Gauflsche Satz:
ou 0O
ﬁ (61; v)dxdy j(udy—-vdx)

und entsprechend erhidlt man fiir das Vektorfeld (v, —u)

ﬁ (—a—-l—)-—-——;)dxdy j'(udx+vdy)
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