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Star polytopes and the Schläfli function f(a, ß, y)

The latter half of this article Tills some gaps in Schlafh's very Condensed treatment of the
volume of a spherical simplex

1. The Kepler-Poinsot polyhedra

For any rational number nd > 2, there is a regulär n-gon of density d, convemently denoted
by its Schläfli symbol {nd} For instance, {§} is the pentagram, whose five sides Surround
its centre twice Analogously in 3-space, for suitable rational numbers p and q, there is

a regulär polyhedron {/?, q} having face {/?} and vertex figure {q} For instance, {f, 5} is
the small stellated dodecahedron, whose faces consist of twelve pentagrams, five at each

of its twelve vertices A famous mosaic, made in 1420 by Paolo Uccello [12, p 20], is

evidently intended to be a picture of this star polyhedron {|, 5} was rediscovered by J

Kepler, whose drawing of it is reproduced in Figure 1 He discovered also the great
stellated dodecahedron {|, 3}, which has three pentagrams at each of its twenty vertices
L Poinsot reciprocated the stellated dodecahedra to obtain the great dodecahedron {5, f}
and the great icosahedron {3,|} [5, pp 96,114] However, the former was actually drawn
in 1568 by Tammtzer [8a, Plate C V]
The planes of symmetry of any regulär polyhedron {p,q} decompose the concentnc unit
sphere into a pattern of spherical triangles [5, pp 109-111] If O is the centre, such a

«charactenstic triangle» ABC is determined by diameters OA, OB, OC which contain
respectively a vertex, the midpoint of an incident edge, and the centre of an incident face

Therefore its angles are A n/q, B n/2, C n/p and its area is

Ap _ A + B + C — n (2p + 2q—pq)n/2pq

When/? and q are integers, as they are for the five Piatonic sohds {3,3}, {4,3}, {3,4}, {5,3},
and {3,5}, the charactenstic tnangle is a fundamental region for the symmetry group,
whose order is accordmgly

g 4n/(A + B + C - n) Spq/(2p + 2q-pq)

This order is 120 for the icosahedron {3,5} and for the dodecahedron {5,3} In fact, their
common symmetry group is

C2 x _45
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The four Kepler-Poinsot polyhedra

{|,5}, {5,f},{|,3},{3(§}

all have the same 15 planes of symmetry as those two «pentagonal» solids, but their 120
characteristic triangles, being larger, cover the whole sphere a number of times, say d
times, where d is naturally called the density ofthe star polyhedron {p,q}. By comparing
the areas [5, p. 111], we obtain

d=^- ~{2p + 2q-pq), (i.i)

which is

3 for {f, 5}, and {5,§},

7 for {f, 3}, and {3,f}.

\f
Figure 1 Figure 2

Figure 2, in which the shaded spherical triangle ABC is made up of three small triangles,
illustrates the density 3 for {f, 5}. Mirrors AC and BC, inclined at 27r/5, reflect the vertex
A (where the angle is n/5) into the successive vertices of a pentagram AA1AnAmA™ which
is one face of {f, 5}, projected onto the circumsphere. The third mirror AB or AA1, being
one side of the pentagram, reflects this face into a neighbouring face.

2. The Schläfli-Hess polytopes

Analogously in 4-space, there is, for suitable rational numbers p9 q, r, a regulär polytope
{p, q, r} having facet (or cell) {p, q) and vertex figure {q, r}. For instance [5, pp. 136,191],
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L Schläfli discovered the six convex polytopes

the 5-cell {3,3,3}, the 8-cell {4,3,3}, the 16-cell {3,3,4},
the 24-cell {3,4,3}, the 120-cell {5,3,3}, the 600-cell {3,3,5}

[4, pp 403, 404, 5, frontispiece]
Schläfli [10, pp 297-298, 11, pp 184-186, 267] discovered also four of the ten regulär
star-polytopes, namely two pairs of reciprocals

the great stellated 120-cell {f, 3,5},

the grand 120-cell {5,3,|},
the grand 600-cell {3,3,f},
the great grand stellated 120-cell {f, 3,3},

[5, p 294, 6, p 46] These four were rediscovered about thirty years later by E Hess [8],
who added

the stellated 120-cell {f,5,3},
the lcosahedral 120-cell {3,5,f},
the great 120-cell {5,f>5},
the grand stellated 120-cell I1 5 ^)12' J'2J'
the great grand 120-cell {5,f>3},
the great lcosahedral 120-cell {3,|?5}

Schläfli failed to recognize these six because, although he had rediscovered {f, 3} and

{3,|}, it seems that nobody had ever shown him a model of {|, 5} or {5,|} (which have
12 vertices, 30 edges and 12 faces) and he beheved Euler's formula to be necessary for the
existence ofa polyhedron, accordingly the symbol {p, q, r} for a polytope could not admit
the numbers 5 and f side by side?

The hyperplanes of symmetry of any regulär polytope {p,q, r} decompose the concentnc
unit 3-sphere into a pattern of spherical orthoschemes [5, pp 130,137] If O is the centre,
such a «charactenstic orthoscheme» ABCD is determined by diameters OA, OB, OC, OD
which contain respectively a vertex, the midpoint of an incident edge, the centre of an
incident face, and the centre of an incident facet Therefore its edges AB, BC, CD are
mutually perpendicular, and the dihedral angles along its six edges CD, AD, AB, AC, BC,
BD are

(CD) n/p, (AD) n/q, (AB) n/r, (AC) (BC) (BD) n/2

When p,q,r are integers, as they are for the six convex polytopes, the charactenstic
orthoscheme is a fundamental region for the symmetry group, whose order is the ratio
of the volumes of the whole 3-sphere and the orthoscheme This order [5, p 153] is

1202 14400
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for the 120-cell {5,3,3} and for the 600-cell {3,3,5}, and also for all the ten star polytopes,
which share the same sixty hyperplanes of symmetry [5, p. 266]. The 14400 characteristic
orthoschemes of the star polytopes, being larger than those of the 120-cell, cover the

3-sphere a number of times, say d times, where d is naturally called the density of the

star-polytope {p,q,r}. Thus d (Schläfli's h) can computed as the ratio of the volumes of
the characteristic orthoschemes for {p,q,r} and {5,3,3}.
To carry out this computation, we investigate, as Lobachevsky and Schläfli did, the
volume of the general 3-dimensional orthoscheme [7, §2], whose dihedral angles are

(CD) ol, (AD) ß, (AB) y, (AC) (BC) (BD) n/2,

as in Figure 3.

Figure 3

3. The 3-dimensional orthoscheme

In any kind of 3-space, the shape of a tetrahedron is determined by its six dihedral angles.

If the Space is spherical (or elliptic, or hyperbohc), these dihedral angles determine its
shape and size. In particular, if the consecutive edges AB, BC, CD are mutually orthogonal,

the tetrahedron is an orthoscheme (see Figure 3). It is determined by the angles ol, ß,

y along the edges CD, AD, AB, while the remaining edges AC, BC, BD have right dihedral
angles. Let us simply call it

with the understanding that it could equally well be called (y, ß, ol) [10, p. 258; 11, p. 248].
If the 3-space is spherical (or elliptic), the dihedral angles satisfy

sina siny > cos/?.
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The edges and face-angles can be computed with the help of a triangulär scheme of
numbers

(-1,-1) (0,0) (1,1) (2,2) (3,3) (4,4)

(-1,0) (0,1) (1,2) (2,3) (3,4)

(-1,1) (0,2) (1,3) (2,4)

(-1,2) (0,3) (1,4)

(-1,3) (0,4)

(-1,4)

where (s, 5) 0, (s, s +1) 1, one ofthe numbers (s — 1, s +1) in the third row can be given
any convement positive value and the rest of them are then determined by the equations

(-l,l)(0,2) sec2a, (0,2) (1,3) sec2ß, (1,3)(2,4) sec2y (31)

The remaining rows are given by the formula

(M-l)(s + U)-l ,_(s, t) (3 2)
(s + l,t — 1)

which is a consequence of the symmetncal rule

(t, u) (s, v) + (u, s) (t, v) + (s, t) (u, v) 0

[5, p 160, 3, p 204, 6, p 56]

All the tngonometnc functions of the angles and edges of the spherical orthoscheme are

very simply expressible in terms of these two-digit Symbols In particular, the edges

a CD, b AD, c AB,

which carry the dihedral angles ol, ß, y, are given by

2 (-1,3)(2,4) nun. 2 (-U)(0,4)
sec a

(-12) ' sec26 (-l,3)(0,4), sec2c= —— (3 3)

or

tan2*
l=JJy

tan2b -^-, tan2c -^ (3 4)

The hmiting case when the spherical orthoscheme becomes Euchdean is given by

(-1,4) 0, (3 5)

which implies a b c 0



30 El. Math., Vol. 44, 1989

The one degree of freedom in our choice of the numbers (s — l,s +1) may naturally be
used to split the product (0,2) (1,3), so that

(0,2) (l,3) sec£.

Then, by (3.1),

— 1,1) sec2ol cos/?, (2,4) cosß sec2y,

and by (3.2),

(-1,2) tan2a, (0,3) tan2^, (1,4) tan2y,

sin2 ol — cos2 ß
x

sin2 y — cos2 ß
(-1,3)= 2 -f, (0,4)= *- J_,

coszacos/? coszycos/?

sin2 a sin2 y — cos2 ß
(-1,4)= jJL- p-. (3.6)

cosza coszy

Using this notation, we have

sin ol cos y cos a cos ß cos y
cos a —, cos b ¦I ____________; ^ VVJ'O U / /

yjsm2 ol — cos2 ß ^sin2 a — cos2 ß ^sin2 y — cos2 ß

sin y cos a
C0SC /.2 2ß (3J)

^/sin^y — coszp

[11, p. 156]. Also, by (3.5) and (3.6), a b c 0 when

sin a sin y cos /?. (3.8)

4. The Schläfli function /(<x, ß9 y)

Schläfli [10, p.235; 11, p.167, 234; 2, pp.285-288] investigated the volume S of the

general spherical tetrahedron, taking as his unit the volume of the orthant (^n,^n,^n)
(that is, one-sixteenth of the whole 3-sphere). He showed that S satisfies the differential
equation

n

where the summation is over the six edges / which carry the dihedral angles k.
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In the case of the orthoscheme (a, ß, y), with volume f(a, ß, y), this becomes

df(a,ß,y) ^(adoL + bdß + cdy). (4.1)

(Schläfli, in his earlier paper [11, pp. 156-163], used a different unit of measurement and
thus eliminated the coefficient 4/7i2.)

In the simple case when ß \n, we have a spherical <disphenoid> (&,\n,y) which joins
arcs AB c ol and CD a y of two polar great circles, so we can expect the volume
to be a numerical multiple of the product ca a y. In fact,

4 4
df(a,±n,y) -^(yda + ocdy) -^d(ay)

and, since f{^n,\n,\n)=t,

f(0L\n,y)=^-20Ly. (4.2)

When one of a, /?, y is changed to its Supplement, f(oL, ß, y) changes in an easily described

manner, suggested by another part of Schläfli's work [10, p. 240; 11, p. 238]. The three rays
issuing from A along the edges AB, AC, AD of the orthoscheme S ABCD (see Figure 3)

will meet again in the antipodes A of A and determine another orthoscheme Sx ABCD,
of type (n — ol, ß, y). The trihedron S u Sx intersects the equatorial 2-sphere of the poles
A and A in a spherical triangle with angles ß,y,\n (these being the dihedral angles along
the edges AD, AB, AC). The volume of the trihedron is the same fraction of the whole
3-sphere as the area of the spherical triangle is of the equatorial 2-sphere, so it amounts
to 16(/? + y — ^7r)/47r orthants:

/ (a,/?,y) + f(n - 0L,ß,y) -(/? + y) - 2 (4.3)
n

and, in particular,

f(ln,ß,y) ^(ß + y)-l. (4.4)

Similarly, the three rays issuing from B along the edges BA, BC, BD of S will meet again
is the antipodes B' of B and determine another orthoscheme S2 ABCD, of type (n — ol,

n — ß, y). The same reasoning as before, applied to the trihedron S u S2, gives

4
f(a,ß, y)+f(n-oc,n-ß,y)=-y.

n

When ol is replaced by n — ol, this combines with (4.3) to give

f(0L,ß,y)-f(0L,n -ß,y) A-l-2. (4.5)
71

Schläfli found also some remarkable connections between (a, n/3, n/3), (2a,a,7i/3) and
(a, 2 ol, ol).
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If ß y n/3, (3.7) yields

sina
cos fl t (4.6)

y/4 sin2 a — l

By (4.1), for this value of a,

n n\ 4

3'3/=7?df[oL,-,~)=^adz. (4.7)

If, instead, ß 2a and y a, (3.7) yields

sin a cos a sin a
COS fl j

^y sin2 2a — cos2 a ^4 sin2 a—l

as in (4.6), and

cos2 ol cos 2 a cos 2 a 2sin2a
cosb - r— —— 1 2cos fl — 1 cos2fl,

snr2a —cosza 4sinza—1 4sinza—1

whence b 2a. Since y a, we have also c a, and

4 4
df(a,2oL,OL) —2 {ada + 2ad(2a) + ada} —^-6adoL 6df(o:,n/3, n/3).

n n

Thus

/(a, 2a, a) 6/(a,tt/3,n/3) (4.8)

[ll,p. 161 (21)]. No constant needs to be added since, by (3.8), both sides of the equation
(4.8) become zero when 3sin2a =1.
In the case of /(2a,a,7i/3), we must replace, in (3.7), a by 2a, ß by a, and y by n/3
obtaining

sin 2 a sin a
COSfl :

y]4 sin2 2 a — 4 cos2^ ^/4 sin2 a—l

as in (4.6), and

cos2acosa cos2a
cosb

y/sm2 2a — cos2 a ^/4 sin2 a-l 4sin2a—l'

whence b 2a again, and

df(2oL,ot,n/3) ad(2cx) + 2ada 4flda 4df(cx,n/3 n/3).
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Thus

/(2a, ol, n/3) 4/(a, n/3, n/3) (4 9)

[10, p 266, ll,p 160(17)] Again both sides vanish when yß sin a =1
Equations (4 8) and (4 9) are two cases of an n-dimensional result [10, p 267, ll,p 256]
which is relevant to the theory of <Minowskian star polytopes) [1, p 22] or (hyperbohc star
honeycombs> [3,p 210] HE Debrunner [7] has discovered a geometne approach to
these formulae The three-dimensional case may be described as follows
In Euchdean or non-Euchdean 3-space, a regulär tetrahedron with dihedral angle 2 a is
decomposed by its six planes of symmetry into 41 24 orthoschemes (a, f, f) Of these six
planes, twojoin one edge ofthe regulär tetrahedron to the midpoint ofthe opposite edge,
and vice versa, decomposing the tetrahedron into 4 orthoschemes (a, 2 a, a) On the other
hand, three of the six planes join one vertex to the three medians of the opposite face,

decomposing the tetrahedron into 6 orthoschemes (2 a, a, |) Since 24 4 x 6, each

(a, 2 a, a) can be decomposed into 6 (a, f, |)'s, and each (2 a, a, f) into 4

5. Rational volumes

Although Schlafli's equation (4 1) cannot be integrated in terms of elementary functions,
something remarkable happens when

cos2 ol + cos2 ß + cos2 y 1 (51)

[10,p 263, 11,pp 159, 175, 260] In such cases (3 7) becomes

a \n — ol, b ß, c ~n — y

and thus (4 1) becomes

*{(I,-_)_« + /w/>+(l.df(a,ß,y)=-i\[-n-a)d(t + ßdß+[-n-y)dy

--2Mm>-2M^i)<>-2M'-2i
Therefore, when (5 1) holds,

™-.m-7)f-(-r.
1

No constant needs to be added, since if a ß + y - n, (4 4) yields

/(i,A,).i„+I)_1.,.|{(^.„_^
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We know [5, p. 109] that the only Solutions of (5.1), in terms of acute angles commensura-
ble with n, are the three permutations of n/4, n/3, n/3 and the six permutations of 27r/5,
n/5, n/3 [10, pp. 268-269; 11, pp. 159-160,180-181]. These yield the five special volumes

fn n n\ 1 fn n n\ 1 r{2n n n\ 1

f\49393J 24' ^Ü'V =72' ^T'5'3/ 225'

f2n n n\
_

1 fn 2n n\
_

19

-'VT'3'5/ 45' ^'T'V225* (5'2)

By (4.3) and (4.9),

n n n\ „f2n n n\ 4 (2n n\ 2 „(2n n n\ „(n n n

/l3'3'3j+/lT'3'3j „lT-_J 3andAT'3'3j 4/l3'3'3;'

therefore

„/7z n n\/Umm =77- (5.3)3'3'3/ 15

By (4.9),

(n n n\ 1 r(2n n n\ 1

rr^/^lT'rly^öö'
and by (4.8),

fn 2n n\ fn n n\ 1

f\5'T'l)= /V5'3'3j==15Ö-

By (4.3) and (5.2),

(4n 2n n\
_

4 (2n n n\ fn 2n n\
_

14 19
_

191
•^ T' T' 3) ~

n \T +
3

~
2 J ~ ^l 5' T' 3 J ~ 15

~
225 ~ 225 '

whence, by (4.9) again,

/__-,_,_) _91
^

V 5 '3' 3 900
v
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[10,pp.268-269(9); 11,pp. 160(20), 181 (19)]. By (4.5) and (4.8),

/2tt n 2n\ „(2n 4n 2n\ 4

^f2n n n\ 6 191 6 11

6/VT'3'3j-5 15Ö-5 15Ö (5'5)

[10, p. 269 (11); 11,pp. 162(23), 181(21)].

Also, by (3.8), there is one trivially rational volume:

„ n n n\

And of course there are infinitely many rational instances of (4.2) and (4.4).

6. The ten star polytopes and their densities

We can now use Schläfli's formula

/'(n/p, 7tlq, n/r)

/(tt/5, n/3, n/3)
(n n n\
p'q'r)

[ll,p. 186; p. 287] to do, for all the ten star polytopes, what he did for his four, namely,
to compute their densities [l;5,pp.284,294]:

4 for {|,5,3} and {3,5,|},
6 for {5,f,5},

20 for {§,3,5} and {5,3,|},
66 for I1 5 1)l2> » 2^'

76 for {5,f,3} and {3,|,5},
191 for {§,3,3} and {3,3, f}.

After mentioning the honeycombs {4,3,3,4}, {3,3,4,3}, {3,4,3,3} [5, p. 153] which tessel-

late Euchdean 4-space, Schläfli [ll,p. 187] unhappily added two «star honeycombs»,
{5,3,3, |} and {§, 3,3,5}, which he declared to have density 191, whereas their density is

really infinite [1, pp. 509,521; 5, pp. 264,285]. This is analogous to an attempt to tessellate
the Euchdean plane with pentagons so as to obtain a «tessellation» {5, ™} [4,p. 63].

H. S. M. Coxeter, Department of Mathematics, University of Toronto
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Eine Anwendung des Gaußschen Integralsatzes

Mittels einer geeigneten komplexen Formulierung des Gaußschen Integralsatzes für die
Ebene werden Formeln für die Trägheitsmomente [1 *] eines Dreiecks hergeleitet, die in
einfacher Weise lediglich von den Eckpunkten abhängen.
Mit G werde ein beschränktes Gebiet in der x, y-Ebene bezeichnet, dessen Rand aus einer
einfach geschlossenen positiv orientierten stückweise stetig differenzierbaren Kurve 9G
besteht. Für ein stetig differenzierbares Vektorfeld

(m, v): G-»JR2

gilt der Gaußsche Satz:

l{^+^)dxdy-L(udy-vdx)'

und entsprechend erhält man für das Vektorfeld (v, — u)

l{t-^)dxdy-L{udx+vdy)-
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