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Eine Integralungleichung fiir streng monotone
Funktionen mit logarithmisch konvexer Umkehrfunktion

In [7] wird bewiesen, dass fiir a >0 und b > 0 die Zahl

1
I(a,b) =~ (b"/a®)"/*",a #£ b,1(a,a) = a
€

zwischen dem geometrischen und dem arithmetischen Mittel von a und b liegt. Weitere
Beweise dazu finden sich in [1], [6] und [9], Verschidrfungen in [2] und [8].

In dieser Note wird eine Integralungleichung bewiesen, in der I (a, b) eine wichtige Rolle
spielt. Die Aussage des folgenden vorbereitenden Lemmas wurde in [3] als Aufgabe
gestellt, Losungen finden sich in [4] und [5].

Lemma: Ist ¢ > 0, so gilt

n 1/n c+
lim ([’[ (c+(i—1)/n)) / =-(E—+—1—)C———l.

n—o \i=1 ec
Fortan sei a> 0, b > 0 und a # b vorausgesetzt.

Satz: Besitzt die streng monoton wachsende Funktion f € C [a, b] eine logarithmisch konvexe
Umkehrfunktion, so gilt

1 b
[ f(x)dx < f(I(a,b)).

b—a

Die umgekehrte Ungleichung gilt, falls f streng monoton fillt.

Beweis: O.B.d.A. sei a < b. Fiir jede natiirliche Zahl n bildet die Menge {x; =a+ (i —1)
(b—a)/nli=1,...,n+1} eine Zerlegung des Intervalls [a, b]. Ist f streng monoton wach-
send, so gilt f(a)<f(x)<f(b)fa.i=1,...,n

Da f stetig ist, gilt folglich

1 n
o T 1(e) €L @, 6] =1 (i, b). *

In dhnlicher Weise ldsst sich zeigen, dass (*) auch gilt, falls f streng monoton fillt. f~!
ist nach Voraussetzung logarithmisch konvex, so dass man die Ungleichung

n n 1/n
(3 £ 50) < (11 )
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erhélt, deren linke Seite wegen (*) wohldefiniert ist. Da f auf einem kompakten Intervall
stetig ist, ist auch f~! stetig, so dass

1 1 @
lim f~1 (; -§1f(xi)) =f"1 (_____& jf(x)dx).

n-— o

Ferner hat man aufgrund des obigen Lemmas (mit ¢ = a/(b — a))

lim (ﬁ x,-)l/": I(a,b),

n—o0 \i=1

womit der Satz bewiesen ist. Q.E.D.

Man rechnet leicht nach, dass fiir f(x) =logx in der Ungleichung des obigen Satzes
das Gleichheitszeichen steht.

Fiir eine zweimal auf [a, b] differenzierbare Funktion f: [a, b] - R gilt der folgende Sach-
verhalt:

Ist f'(x) >0 (und damit f streng monoton wachsend) auf [a,b], so ist f~! genau dann
logarithmisch konvex, wenn f'(x) + x f"(x) <0 auf [a, b] gilt.

Ist f'(x) <0 (und damit f streng monoton fallend) auf [a, b], so ist f~! genau dann
logarithmisch konvex, wenn f'(x) + x f"(x) > 0 auf [a, b] gilt.

Beispiel: Es seien 0 <p <1, 0<h<(1—p) min(a,b) und f:[a,b]—> R definiert durch
f(x) = (x + h)? L. Offensichtlich ist f'(x) <0 und f'(x)+ xf"(x) >0 auf [a,b], so dass
nach einer der obigen Bemerkungen der Satz anwendbar ist.

Er liefert die Ungleichung

S,(a+h, b+h) <I@ab)+h 1)

mit dem Stolarsky’schen Mittel [7] S, (c, d), das fiir ¢ > 0 und d > 0 wie folgt definiert ist:
Fur alle reellen Zahlen r #0,1 sei

ch—d"
r(c—d)

1r—1)
S,(c,d)z( ) , ¢#d, S,(c,0)=c,

sowie S,(c,d) = 1I(c,d), So(c,d) = L(c,d) mit dem logarithmischen Mittel

—d
L(c,d) = ——~E~————-, c#d, L(c,¢c)=c.
logc —logd

Lisst man in (1) p gegen O streben, so erhélt man
L(a+ h,b+h)<I(a,b)+ h fir 0<h<min(a,b).
Fir h =0 sind diese Ungleichungen bekannt [7].

H.-J. Seiffert, Berlin, BRD



18 El. Math,, Vol. 44, 1989

LITERATUR

1 Alzer H.: Uber einen Wert, der zwischen dem geometrischen und dem arithmetischen Mittel zweier Zahlen liegt.
El. Math. 40, 22-24 (1985).

Alzer H.: Ungleichungen fiir (e/a)® (b/e)®. El. Math, 40, 120—123 (1985).

Euler R.: Problem 1178. Math. Mag. 56, 326 (1983).

Klein B. G.: Solution I of 1178. Math. Mag. 57, 302 (1984).

Seiffert H.-J.: Solution II of 1178. Math. Mag. 57, 302 (1984).

Seiffert H.-J.: Werte zwischen dem geometrischen und dem arithmetischen Mittel zweier Zahlen. El. Math. 42,
105-107 (1987).

Stolarsky K. B.: Generalizations of the logarithmic mean. Math. Mag. 48, 87-92 (1975).

Stolarsky K. B.: The power and generalized means. Am. Math. Monthly 87, 545-548 (1980).

9 Bemerkung zur kleinen Mitteilung von H. Alzer. E. Math. 41, 41 (1986).

AN bh WN

[e RN |

© 1989 Birkhiuser Verlag, Basel 0013-6018/89/010016-03 $1.50+0.20/0

Aufgaben

Aufgabe 977. Let p,, (x) denote the characteristic polynomial of the (m, m) top left subma-
trix of an (n+ 1, n + 1) irreducible tridiagonal matrix 4 = (a;;). Let p,., (x) have n +1
distinct real zeros &, ..., ¢&,. Put

J 2% (<% B Y () I ] (9
D,:= Prer1(Ch) Prv1 Crn) oo Prr1(E0) |-

----------------------------------------

pn(ék) pn(ék-i‘l) pn(én)
Prove D, £ 0 (0 =k <n).

Remark: The problem arose in a study of a fluid reservoir regulated by a general
birth-death process.
E. A. van Doorn, A. A. Jagers, Enschede, NL

Solution by the proposer. Let N =n — k. Define p,(x) = 1. Then the familiar recurrence
relation

Pm (X) = (amm - x) Pm-1 (x) - am.m—— 1Gm- 1,mpm—2(x) (*)

is valid for all m with 2 <m < n + 1. Hence, if two consecutive polynomials p,,_ , (x) and
Pn(x) have a zero t in common, then p;(t) = 0 for all j, since a, ;_, a,_; ; + 0 by definition
of irreducibility. However, this contradicts the definition of p (x). It follows that p,, _, (x)
and p, (x) have distinct zeros. In particular, since p,(&,)=p,.(£,) we must have
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