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Eine Integralungleichung für streng monotone
Funktionen mit logarithmisch konvexer Umkehrfunktion

In [7] wird bewiesen, dass für a > 0 und b > 0 die Zahl

I(a,b) -(bb/aa)1,(b-a\ a^b, I(a,a) a
e

zwischen dem geometrischen und dem arithmetischen Mittel von a und b liegt. Weitere
Beweise dazu finden sich in [1], [6] und [9], Verschärfungen in [2] und [8].
In dieser Note wird eine Integralungleichung bewiesen, in der I(a,b) eine wichtige Rolle
spielt. Die Aussage des folgenden vorbereitenden Lemmas wurde in [3] als Aufgabe
gestellt, Lösungen finden sich in [4] und [5].
Lemma: Ist c>0, so gilt

/ n \l/n (c + l)c+l
hm [U(c + (i-l)/n)) =K- L-.

Fortan sei a > 0, b > 0 und a # b vorausgesetzt.

Satz: Besitzt die streng monoton wachsende Funktionfe C [a, b] eine logarithmisch konvexe

Umkehrfunktion, so gilt

-^—]f(x)dx<f(l(a,b)).
b-a i

Die umgekehrte Ungleichung gilt, falls f streng monoton fällt.
Beweis: O.B.d.A. sei a < b. Für jede natürliche Zahl n bildet die Menge {xt a + (i — 1)

(b — a)/n\i l,...9n + l} eine Zerlegung des Intervalls [a,b]. Ist/streng monoton wachsend,

so gilt f(a) <f(xx) <f(b) f.a. i 1,..., n.

Da / stetig ist, gilt folglich

- zZf(xi)e\f(a),f(b)]=f([a,b]). (*)

In ähnlicher Weise lässt sich zeigen, dass (*) auch gilt, falls /streng monoton fällt. f~l
ist nach Voraussetzung logarithmisch konvex, so dass man die Ungleichung



El Math Vol 44, 1989 17

erhält, deren linke Seite wegen (*) wohldefiniert ist. Da / auf einem kompakten Intervall
stetig ist, ist auch f'1 stetig, so dass

nm f~'(- i f(xx)) =r'(-^]f(x)dx
„-.oo \n' i / \b-aa

Ferner hat man aufgrund des obigen Lemmas (mit c a/(b — a))

n \l/n
lim nx, =I(a,b)9

n -*¦ oo \i 1 /
womit der Satz bewiesen ist. Q.E.D.
Man rechnet leicht nach, dass für /(x) logx in der Ungleichung des obigen Satzes

das Gleichheitszeichen steht.
Für eine zweimal auf [a, b] differenzierbare Funktion /: [a, b] -»IR gilt der folgende
Sachverhalt:

Ist/'(x) > 0 (und damit / streng monoton wachsend) auf [a,b], so ist f'1 genau dann

logarithmisch konvex, wenn f'(x) + xf"(x) < 0 auf [a, b] gilt.
Ist /'(x)<0 (und damit / streng monoton fallend) auf [a,b], so ist f~l genau dann
logarithmisch konvex, wenn f'(x) + xf"(x) > 0 auf [a,b] gilt.

Beispiel: Es seien 0<p<l, 0<h<(l —p) min(a,fr) und /:[a,fr]-*lR definiert durch

f(x) (x + h)p ~ *. Offensichtlich ist /'(x) < 0 und f'(x) + xf"(x) > 0 auf [a, b], so dass

nach einer der obigen Bemerkungen der Satz anwendbar ist.
Er liefert die Ungleichung

Sp(a + h,b + h)<I(a,b) + h (1)

mit dem Stolarsky'schen Mittel [7] Sr(c,d), das für c> 0 und d > 0 wie folgt definiert ist:

Für alle reellen Zahlen r ^ 0,1 sei

/cr_dr\l/(r-l)
Sr(c,d) [- ^ c*d, Sr(c,c) c,

\r(c-d)J

sowie Sx(c,d) I(c,d), S0(c,d) L(c,d) mit dem logarithmischen Mittel

c — d
L(c,d) —- ,c^d, L(c,c) c.

logc—log rf

Lässt man in (1) p gegen 0 streben, so erhält man

L(a + h,b+h)<I(a,b) + h für 0<h <min(a,b).

Für h =0 sind diese Ungleichungen bekannt [7].

H.-J. Seiffert, Berlin, BRD
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Aufgaben

Aufgabe 977. Let pm(x) denote the characteristic polynomial ofthe (m, m) top left subma-
trix of an (n + l, n + l) irreducible tridiagonal matrix A (aXJ). Let pn+l (x) have n + l
distinct real zeros £0,..., £n. Put

Db:-

Pk(Zk) Pk(£k+i) ••• pAU
Pk+i (£*) Pk+1 (£*+1) •• • Pk+i (&¦)

Pnttk) Pn(Zk+l) •'• Pndn)

Prove Dk + 0 (0 k n).

Remark: The problem arose in a study of a fluid reservoir regulated by a general
birth-death process.

E. A. van Doorn, A. A. Jagers, Enschede, NL

Solution by the proposer. Let _V n — k. Define p0(x) 1. Then the familiär recurrence
relation

Pm(x) (amm-x)pm_x(x)-amtm.xam_Xtmpm.2(x) (*)

is valid for all m with 2^mgn + l. Hence, if two consecutive polynomials /?m_ x (x) and

pm(x) have a zero t in common, then/?.(t) 0 for all 7, since fls,,-iös-i,s + 0by definition
of irreducibility. However, this contradicts the definition of/?0(x). It follows that/?m_ x (x)
and pm(x) have distinct zeros. In particular, since /?„(<_„) =A,+ i(<_„) we must have
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