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Some inequalities for the triangle

Inequalities involving the average side, the average altitude, and the diameter
of the circumscribed circle of a triangle

I. Introduction

Let a, b, c be the sides of a triangle inscribed in a circle of diameter D Denote by / and
h the averages ofthe sides l (a + b + c)/3 and the altitudes h (ha + hb + hc)/3, respectively

The quotients h/l and D/l satisfy the following sharp inequahties (with equality for
the equilateral triangle)

0 < h/l < yß/2 (1)

2/yß < D/l < + oo (2)

The first inequahty is due to Santalo [S] and the second to Nakajima [N] and Padoa [P]
(see also [B], 6 1 and 5 3) Inequahty (1) was also proposed as a Monthly problem (E1427,
page 692, vol 67, 1960, Solution on page 296, vol 68, 1961) Apparently none of the 19

Solutions received mentioned [S], which had appeared 17 years earlier
Averaging the inequahties in (1) and (2) gives

l/^3<±h/l + ±D/l<+<x>9 (3)

but the sharp lower bound 1 is not hard to obtain (see [C]) The objective of this paper
is to study such inequahties
Two questions arise naturally (a) what happens when other convex combinations of h/l
and D/l are considered, and (b) what happens when only acute triangles are considered7
We obtain sharp inequahties for all combmed cases of (a) and (b) (in particular we prove
the upper bound for (3) in the case of acute triangles conjectured in [C])
More precisely, for 0 < 6 < 1 denote by ge and Ge the infimum and supremum of
E0 9 h/l + (1 — 6) D/l taken over all triangles and by g'e and G'e the infimum and

supremum taken over all acute tnangles Our mam result is the following theorem whose

proof is given below
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4. Theorem. With 04 and 0XO given below, we have:

If | <0<1 then ge ^s/e(l-d);
if \ <0<\ then ge \-0', (4.1)

if 6X0<e<\ then ge Q(3u + 2)y/(l-u)/(l+u)

where u is the smaller root of

(u2-l)(2u + 3) + 3(l-0)/e 0 in 0 < u < 1;

if O<0<0XO then ge (J3/6)(4-0).

Only when 0 < 0 < j is g9 attained (at the equilateral triangle for 0 < 6 < 0XO and at the
isosceles triangle with angle opposite the base equal to n — 2 arccos(u) for 0XO < 6 < |).

* // |<0<1 then gfd l-0;
if O<0<| then g'e ge. (4.2)

It is attained only for 0 < 0 < ±.

//04<0<1 then G'e —(4-0);
6

if JL(5-72)<0<04 then G'e 3(- 1 + yfi) + \(9 - 7^2)0; (4.3)

if 0<Ö<^(5-x/2) then G'e \-Q.

Only when ~(5 — \J2) < 0 < 1 is the supremum attained (at the equilateral triangle for
04. < 0 < 1 and at the right isosceles triangle for ^(5 — y/2) < 0 < 04).

G0 -f oo for 0 < 0 < 1. (4.4)

In the above

04 (l/382)(508 + 153^/2 - 138^3 - 113^/6) 0.5460,

ö10 3/(3 + K10) 0.4799,

where Kxo 3 + 2u0 - 3u%-2u% 3.2512, with

A £(22,429 + 243 ^ßm)1'3 + £(22,429 - 243 y5793)1/3 + {-

and

9
48

1 / ,- /297 19 \ 11

u0 UJÄ+ / - + A) 0.1801.
2\V V32V_4 16 8
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We close this section with some particularly attractive inequahties obtained from
Theorem 4 by assigning special values to 9 In all cases the upper bounds hold for acute
triangles, and they are sharp The lower bounds hold for all tnangles, and they are sharp
for both acute or arbitrary triangles

2/</i + D<(l/2)(-3 + 5v/2) /

(5/2)^/3 l<h + 3D<5 l

3l<3h + D<(13/6)y/3 l

7l<5h + 3D<(9/2)yß l

(v/3/6)(7 + 4y/2) l<h + (l+ J2)D < (1/2)(4 + 3^2) /

(1/6)v/3(- 3 + lyfi) / < (y/2 - l)/i + y/2D < (1/2)(- 1 + 4^2) /

405 yßjl l <l62h + 115D <(- 2%2 + 444yfi) l

608^/7 l< 768h + 819D<(- 1305 + 2073^) /

(1725/yil) l < 250h + 264D <(- 411 + 667y/2) l

The corresponding values of 0 are 1/2,1/4, 3/4, 5/8,1 - (yßß)9 (1/7) (3 - yß), 162/337,
(16/23)2, and 125/257, respectively Such nice expressions can not be expected for all
values of 9, of course In particular if 0 12/25 for example (so K 13/4), given any
triangle T one can construct with straightedge and compass the number Ee(T) but it is

impossible to construct the lower bound gX2/25 or the triangle where it is attained

II. Reduction to special cases

Since h/l and D/l are invariant under dilations we will assume in the rest of this paper that
D 1 Then if a, ß, y are the angles opposite sides a, b, c we have a sin a, b sin ß,

c smy, ha bc, hb ca, hc ab Abbreviate

P a + b + c sin ol + sin ß + sin y

Q a b + b c + c a sin a sin ß + sin ß sin y + sin y sin a (5)

and introduce the convement parameter K 3 (1 — 0)/0 (so that 0 3/(3 + K)), we will
frequently use K or a combination of both K and 0 in heu of 0 Then Ee 0 (Q + K)/P
and our problem is to find the extrema of E0 as a function of a, ß, y subject to

0L,ß,y> 0,oL + ß + y n (6a)
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for the case of all triangles or

f>a,j8,y>0, o: + ß + y n (6b)

for acute triangles

7. Proposition. The interior critical points ofEe subject to (6 a) (or (6 b)) satisfy ol ß,

ß y, or y ol, i e they correspond to isosceles triangles

Proof Apply Lagrange multiphers as follows Denote f (ol, ß,y) a + ß + y — n Using
(5) we get

— (Ee + Xf) —-{(P2 - ß - jFQcosa - Psinacosa + XP2}
9a P2

and similar expressions for the other partial derivatives Thus the simultaneous vamshing
of d(Ee + X /)/9a, d(Ed + X f)/dß, and d(Ee + X f)/dy, is equivalent to a system of the
form

L cos a + M sin a cos ol + N 0

Lcosß + Msmßcosß + N 0

L cos y + M sin y cos y + N 0

(with M P + 0 for interior points, ete) Therefore the critical points are zeros of

(cos
a sin ol cos ol 1

cos ß sin /? cos /? 1

cos y sin 7 cos y 1,

From the assumptions 0 < a9ß9y,0L + ß + y n one can evaluate ö (a, ß, y) (see VI)

ol — ß ß — y y — ol f ol ß y\
ö(ol,ß,y) 4sin—-—sin—-—sin—-— 1 + 2sin- sin- sin-

2 2 2 \ 22 2/

and since the last factor cannot vanish (in fact, > 2 by 2 16 in [B]), two of ol, ß, y must
agree, and the proof of Proposition 7 is complete
This reduces the calculations to isosceles and degenerate triangles (or isosceles, degenerate

and nght triangles if we restnet ourselves to acute tnangles) In fact interpreting the

simplex ol + ß + y n, 0 < 0L,ß,y as an equilateral tnangle (see Figure 1) we conclude
from the proposition above that in order to minimize or maximize Ee over all triangles
it suffices to do so over the intervals Vx V[ and Vx V2 (the remainder of the boundary
simply repeats congruent copies of degenerate tnangles already contained in Vx V2) For
acute triangles it suffices to consider RV{ and RV2, for analogous reasons Thus from now
on only critical points of functions of one variable are considered
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V "

(3=0

0

Figure 1

oc=0

To avoid repetition we use V to denote the degenerate triangle with two nght angles, and
E and R to denote the equilateral and the nght isosceles triangles, respectively In
Figure 1 congruent copies of V appear three times as V[9 V2 and V3 We have

Ee(V') l-0
2^ 73

Ee(E) 0
3 6

Ee(R) 3(- 1 + ^2) + {(9 -7 ^2)0

We will also introduce thirteen constants Kx, K13 whose values are given in Table 1

III. Critical points

In this section we determine the extrema of Ee on each of the relevant segments of
Figure 1

ULI. Case of V{' V2

These degenerate triangles have ß 0, 0 < y < n/2, ol n — y so that

£0=0(sin2y + K)/2smy

The critical point W on Vx V2 is characterized by that value of y at which

dEe 0 cos y 2

dy 2 sin2 y
^-(sm2y-K) 0
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so that K sin2 y is between 0 and 1. Also E0(W) 0y/~K, so it is easy to compare the
values of Ee at the endpoints V?(E9(V?) + oo), V2'(E0(V2f) E0(V')) and E9(W).

111.2. Case of RV2'

These are right triangles with a %\29 0 < ß < n/49 y n/2 — ß. Setting y 1 + sin ß

+ cos ß we have E0 y 0/2 + 0 (K — l)/y and therefore the only critical points dE0/dß 0

satisfy y2 2 (K — 1) or dy/dß 0. Now dy/dß 0 corresponds to R and for the triangle
Rx corresponding to the other Solution we have E0(RX) 0y. Since 2 < y < 1 + y/2
there is an internal (0 < ß < n/2) critical point only for K5< K < KX3. Calculating
dE9/dß between ß 0(V2) and ß n/4(R) we see easily that for K5 < K < KX3 we have

dE0/dß < 0 at ß 0 and dE0/dß > 0 at ß n/4 - e for e > 0 sufficiently small. This
shows that E(JRX) < E(V2f) and £(1^) < E(R).

111.3. Case of F/' V{

These are isosceles triangles with ß y. Introduce the parameter m ^/l — b2 ^/l — c2

cos jÖ cos y so that a 2 u ^/l — u29 and

ir/i,. ^r^ D(l+4t.)(l-u2) + X
E9(a9b9c) Eö(m) 0

2(1 + 11)^/1 -u2

The triangles K/, £, K and K/' correspond to u 0,1/2, N/2/2 and 1, respectively. Also
abbreviate

n(x) =(l-x2)(l+4x),

C(x) =(l+x)Vl-x2,

^(x) =(l-x2)(3 + 2x),

H(x9y) (n(x) + y)/C(x)9

</>(x) 2(2 + 3x) y—^ H(x,^(4
V 1 + x

Then E0(u) (0/2)H(u9K) and

rf£e_0(l -2m)(^(m)-K)
"5t7"2 C(")(l -u2) "

Thus the critical points of E9(u) are given by u 1/2 and any roots of

ili(u) K (8)
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Figure 2.

3+V2T _i_ y?
~~5 2 2

U0(K) UX(K)

in the interval 0 < u < 1 for general triangles, 0 < u < yj2/2 for acute triangles. (Note
that by symmetry the directional derivative of E9 perpendicular to Vx V[ vanishes so that

every root of (8) is indeed an interior critical point.)
Observing Figure 2 we obtain: For K > Kxx there are no roots of (8) in (0,1). For
3 K5 < K < Kxx there are two roots

0 < u2 u2(K)<±(-3+ y/21) <ux =ux(K)< 1/2

and for 0 < K < K5 there is only one root 1/2 < ux < 1. Furthermore, in the last case,

we have v/2/2 > ux (i.e., ux represents an acute triangle) exactly when K3 < K. We will
denote by Ix and I2 the triangles corresponding to ux and u2, respectively.
From the calculation

i//'(x) 2(2 + 3x)(l - x2)</>'(x)/cf>(x)

and the relation K il/(ut(K)) for i 1,2 we get

^'(uddutÄ
dK— log ^(11,)

*(«_ dK

*'(««) ditj

2(2 + 3„()(l-- uf) dK

1

2(2 + 3«,) (1 - uf)

1 3 + 2«f

2X2 + 3u,-'
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We draw two conclusions from this formula. First,

±logtM ± uinü2 >().
dK hc/>(ux) 2K(2 + 3m1)(2 + 3m2)

Second,

J-logE0(Ii) -^log(0<f>(ui))

_& 1 3 +2m,
0 2K2 + 3ux-

1 1 3 + 2ux-
+K + 3 2K2 + 3u?

which is positive when K 3 for both ux 1/2 and u2 0. Using \l/(ux) K,
this derivative could only vanish if ut were a root of 8x4 + 14x3 — 5x2 — 8x + 6

(2 x + 3) (4 x3 + x2 — 4 x + 2) 0. But this equation has no positive root. Hence from
E9(u2)/E0(ux) <f>(u2)/</>(u2) and the foregoing we get:

III.4. E0(IX), E9(I2)9 and the ratio E0(I2)/E9(IX), are strictly increasing functions of K.
Since E0(I2) Ee(Ix) for K Kxx it follows that E0(I2) < E0(IX) for 3 <K<KXX.

IV. Intersections

According to sections II and III the extrema of E9 are achieved for general triangles at
one of E, V, V", W, Ix, I2 and for acute triangles at one of R, E, V\ Rx, I2 and Ix (if Ix
corresponds to an acute triangle). To determine which points correspond to extrema we
consider the seven functions fT(K) E9(T) of K where, T is one of V, W, R, Rx, E,

Ix, I2 and 0 3/(3 + K). Our strategy is a brüte force approach: First we determine the
values of K at which each pair of functions fT and fs intersect by solving

fT(K) fs(K) (9)

and then we rank them in the resulting contiguous intervals. All the Information is

summarized in Figure 3 at the end of this section and Tables 1 and 2.

IV. 1. T,Se{R,E, V'}. These are isosceles triangles with uT and us among uR -y/2/2,

uE 1/2, Uy 0 so the intersections occur at the roots of

(1 + 4nr)(l -u2T) + K= (1 + 4us)(l -u2) + K
2(1 + uT)(l - 4)1/2 2(1 + us)(l - u2)1'2

which is linear in K. The Solutions X4, K6, KX2 are listed in Table 1.



El Math Vol 44, 1989 9

IV.2. Te{Il9I2},Se{R9E9V'} Equation(9) reads

0n(u) + i/,(u)
^ (l+4us)(l-u2) + K

2 £(u) 2(1+us)(1-m2)1/2

where K \j/(u) Upon squanng this yields a seventh order polynomial in u The roots
r in ((— 3 4- yßi)/6,1) correspond to T Ix and the roots s in (0, (— 3 + N/2T)/6)
correspond to T I2

IV.2a. When S R the equation obtained is

(ii - l/y/2)2(Su5 + 8(4 + y/2)u4 + 2(19 + 16yß)u3

+ 2(-l + I3yß)u2 + (l -2yß)u + 9-4y/T) 0
where the fifth order factor has no positive roots and the root r 1/^/2 corresponds to
the intersection of f*1 and fR at K3

IV.2b. When S E the equation is (u - 1/2)3 (8 w4 + 44 u3 + 86 u2 + 33 u - 9) 0 and
r 1/2 > (- 3 + s/2A)l6 gives the intersection of fu and /E at X5 uV(l/2) 3 The

quartic factor has one positive root u0 0 180125573 whose closed form expression is

given in the Statement of Theorem 4 It corresponds to the intersection of f*2 and fE at

IV.2 c. When S V the equation obtained is u2(4u5 + 16 t.4 + 13 u3 - 27 u2 -
12w + 8) 0 and the second factor has two positive roots rx 0 961103259 and

r2 0 407160288 (both are > (- 3 + v^)/6) They correspond to the intersections of
fIx and fv at Kx y(rx) and K7 y/(r2) The root m 0 corresponds to the intersection
of fl2(K) and fv (K) at K5 uV (0) 3

IV.3. T Ix, S I2 As stated in III4 these intersect only once, at Kxx

IV.4. T V', S RX Equation(9) is 3/2 - 3/(3 + K) (3/(3 + K))y/2K-2 so

K K5 3

IV.5. T E, S RX Recall that fRi is only defined for 3 < K < 5/2 + yß The

equation (9) is 2^/3/3 - (v/3/6)(3/(3 + X)) (3/(3 + K))y/2K-2, or 16 K2 - 144 K
+ 297 0, and K8 (18 - 3 y3)/4 is the only root in the ränge

IV.6. T R, S RX Equation (9) is 3(- 1 + yß) + \(9 - 7yfi)(3l(3 + K))
(3/(3 + K))y/2K-2 or K KX3 5/2 + ^2

IV.7. T RX9 Se{lx,I2} The equation is

•_!!L+j___,,/S?W-2
2 CM
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where K i//(u). Thus u2(4u2 + u - 1) 0, and the positive root r (- 1 + y/ll)ß
corresponds to the intersection of fIx and fRi at K K9 ^(r) (135 + 17>/_7)/64.
The root u 0 corresponds to the intersection of //2 and fRl at K5 3 i^(0).

IV.8. T=r, S=W. The equation is 3/2-3/(3 + K) (3/(3 + K))y/k so K K2 1.

TV.9. Te{E,R}, S=W. Equation (9) leads to quadratic equations (16X2-36K
+ 81 0 for T E, 4K2 -SK + 9 + 4yß 0 for T R) with no real roots.

IV.10. Te{Ix,I2}, S W. Equation (9) reads

0(n(u) + i/,(u))/2£(u) 0yßHÜ)

or (u - l)(2u3 - 2u2 - 4u - 1) 0, with no root in (0,1).

IV.ll. T Rl9 S W. The corresponding functions have disjoint domains so there is

no intersection.
The proof of Theorem 4 results now from inspections of Tables 1, 2, 3, and 4.

Vt
X *.I,—' -^ >

Kx K2 K-. K4 K5 K6 K? KQ Kg K1Q K1;L K±2 K±^

Figure 3 Abstract sketch of the ranks and intersections of fT{K)

V. Miscellaneous remarks

V.l. In Theorem 4 we gave a "closed form" radical expression for Kx0. This is possible
for all Kx except Kx and K7. In fact the polynomial t(u) 4u5 + 16u4 + 13u3 — 27m2

— 12 m + 8 is irreducible over the rationals and has precisely two non-real roots. Thus its
Galois group is S5 (the Symmetrie group on five elements) (see [K], Theorem 29). If
K Kx or Kl9 then for some root u of t, K ^(u)eQ(u)\Q. As [Q(u):Q] 5, we have

Q(K) Q(m). Thus the Galois group of the minimal polynomial for K is S5 as well
AutQN9 where N is the normal closure of Q(K) over Q). Hence K can not lie in a

radical extension of Q (by Theorem 28 in [K]).
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Table 1 Values of K, and 0,

K0 =00000 =0
K1 0 3755 <A(u)[l*] where u is the larger root of r(u)[2*] in (0,1) (u 09611)
K2 1 0000 1

K3 =2 2071 =(3 + y/2)l2
K4 =24948 =(3/194)(39-18^2+ 33^/3+ 37^/6)
K5 =30000 =3
K6 =31801 =(3/11X3 + 5^/3)
K1 3 1820 i/< (m) where u isthe sma/ter root of r{u) in (0, l)(u 0 4072)

K8 3 2010 (1/4)(18 - 3^/3)
K9 3 2046 (1/64)(135 + 17^/17)
K10 3 2512 <Hu0) where u0 is_the root of <t(m)[3*] in (0,1) (u0 0 1801 [4*])

Kn 3 2821 (1/18)(27 + 7^/21)
/C12 3 4142 =2 + ^/5
K13 3 9142 =(l/2)(5 -h 2^/2)
K„ =oo

Oo 10000

öt 0 8888

0?. 0 7500

0, 0 5761

04 0 5460

ö, 05000
0* 04854

*7 04853
08 04838

0, 04835
ö10 04799

0,, 04775
*1_ 04677

0i, 04339

0. 0

[1*] \l/{u) - 2m3 -3m2 + 2m + 3,

[2*] r(u) 4«5 + 16m4 + 13m3-27m2-12m+ 8,

[3*] o{u) 8m4 + 44m3 + 86m2 + 33m - 9,

[4*] the exact value of m0 is given in Theorem 4

Table 2 Values of K at which fT(K) and fs(K) intersect Table entnes are the subscripts from Table 1 (e g, f'1
and fy intersect at K Kt and K K7)

V I2 I, E R R{ W

V-5h ~ ~
h
E

R - -
R,
W

[1*] no intersection,
[2*] intersect, do not cross

Table 3 (All triangles) Ordenngs of E0{T\ for Te{W, V',Il,E2,E} and Kt< K <Kj The critical point of
lowest Ee appears on the left, Ee mcreases to the nght

17 6 12 5 2

11 10 [1*1 5 [1*1

- 5 3 [2*] 9 [1*1

- - 4 8 [1*1

- - - 13 [1*1

- - - - [1*1

hj

0, 1 W h V E

1, 2 W V h E

2, 5 V h E

5, 6 h V E h
6, 7 h E V h
7,10 h E h V

10,11 E h h V
11,00 E V
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Table 4 (Acute tnangles) Ordenngs of E9 (T) for T e {Jt, I2, Ä, R l, £, K'} for Kl<K<K] The critical point with
smallest value of Ee appears on the left, E0 mcreases to the nght (Remark _\ is obtuse for K < K3)

h)

0, 3 V R E
3, 4 V h R E
4, 5 V h E R

5, 6 h Ri V E h R

6, 7 h Ri E V h R
7, 8 h Ri E h V R
8, 9 h E Ri h V R

9,10 h E h Ri V R

10,11 E h h Ri V R

11,12 E Ri V R

12,13 E Ri R V
13, oo E R V

Setting a(u) 8 m4 4- 44 m3 + 86 m2 + 33 u — 9, note that the cubic resolvent of o is the
irreducible cubic with two non-real roots

(4y)3 - 43 (4 y)2 + 435 (4 y) - 2007

with Galois group S3 (the Symmetrie group on three elements) (see [K], Theorem 29). The
Galois group of o AutQ N where N is the normal closure of Q (m0) where a (m0) 0) is
S4 (by Theorem 43 in [K]). Since Kxo x/, (m0)e Q(m0)\Q, Q(01O) Q(Kxo) Q(m0) ([K],
Ex. 5, p. 53).

Therefore

i) 01O, Kxo and m0 are of degree 4 over Q (a is irreducible!).
ii) The minimal polynomials of 01O, X10 and u0 all have Galois group S4.

iii) None of 01O, Kxo, u0 are constructible with straightedge and compass ([K], p. 195,

remark at page bottom).

Thus none of the following are constructible with straightedge and compass (over Q):

i) The minimum relative Variation of E0(T) over acute triangles (see V.3):

ii) The Upper (lower) bound of E9(T) at the point of minimum relative Variation:

^010' #010*

iii) The non-equilateral, isosceles triangle with minimum value of E9 at the point of
minimum relative Variation (angle opposite the base equal to n — 2 arccos m0).

iv) The relative weights for minimum relative Variation in E0: 0XO and 1 — 01O.
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All ofthe above are of course constructible given 01O (or X10). For completeness we give
the minimal polynomial of 01O over Q:

4871 04 - 593903 + 135602 + 112 0 + 32.

V.2. The conjeeture in [C] that for any acute triangle Twe have EX/2(V) < EX/2(T)
< EX/2(R) follows from Theorem4. Observe that it can be written as

l<{:(h + D)<~3+45^-l

where EX/2(R) (- 3 +- 5>/2)/4 1.017766953, i.e.: in any acute triangle the average of
the mean altitude and the circumdiameter is within 2% of the mean side.

V.3. From Theorem 4 and III.4 we see that G'e, g9 and g0 are decreasing functions of 0,

so that ^3/2 < G0 < 3/2, 1/2 < g0 < 2/^/3 and 0 < g0 < 2/^/3 where the lower limits
correspond to 0 1 and the Upper limits to 0 0. It also follows from Theorem 4 that
Ge/ge is a decreasing function of K for 0 < K < K5 and increasing for K > Kxo. Over the
interval K5 < K < Kxo, we have G0/g0 E0(R)/E0(I2) 2Ee(R)/0(/>(u2(K)) where </>

and m2 are as in III.3. The logarithmic derivative

^_lo G'e 2(-l+y/2) 3 + 2m2(X)

dK °g
g'0 3 _ ^ß + 2(- 1 + yß)K 2K(3u2(K) + 2)

can only vanish when (using K ^(u2))\

(u2 + 3/2)(m2 - 1/V2)(8m2 + 2(1 + 2^/2^ - 4 + yß) 0.

However the smallest positive root of this equation is (v^l — 4^/2 — (2yj2 + l))/8
which is greater than (— 3 + yßi)/6, and therefore it can not be m2. Hence the quotient
G'0/g'e is monotone over K5 < K < Kxo and an evaluation of the logarithmic derivative
at K K5 shows it to be a decreasing function of K there. Thus

for K < Kxo: G0Jg'0lQ < G'0/g'0 < yß,
for K > Kxo: G'0Jg0lo < G'0/g'9 < 3^/3/4,

where the upper limits correspond to 0 1 and to 0 0, respectively. The minimum
value of G0/g9 is then achieved at K Kxo with value

18(-l+v^) +3(9-7^2)0,0
1 0104?1349

>/3(4 - Ö10)

(where 01O 3/(3 + Ki0)), or using the values of g'$w and Gglo:

1.01616367-/ < 6i0h+(l - 6i0)D < 1.026804277/.
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VI. Calculation of Determinant

Here is the calculation used in II. of the determinant

(1
cos ol sin ol cos ol

1 cos/? sinßcosß J.

1 cos y sin y cos y

Set x em, y elß, z ely. Then xx yy zz 1 and xyz — 1. Also substituting
in the determinant and using linearity in each column we get 8 iS öx — ö2 + ö3 — (54,

where

Sx det |

ö2 det

<53 det |

<54 det I

x x

y y*
Z Z2

X X

y f
z z2

X X"

v y
z z2

X X"

y y*

Now <5X is a Vandermonde determinant so öx (y — x)(z — y)(z — x) and using x 1/x,
etc., and xyz — 1 we get

3- ,_ _w_ _w_ _, x-y y-z x-z
xy yz xz

so <5i is purely imaginary. Since <54 Sx we have (5X — <54 2^.
On the other hand

/l x2 x3^

<52 (xyz)2<52 det 1 y2 y3

\l z2 z3'

and by successive subtraction of columns we find ö2 (xy + yz + zx)(y—x)(z — x)(z — y)

-(z + x + y)Öx.Alsoö3 o~2so -ö2 + ö3 2iX((z + x + y)öx) 2öxyi(z + x + y). Thus
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4iö (l+^R(z + x + y))Sx. Finally observe that

y - x elß - el" el{a+ß)l22ism^-^
2

and similar formulas hold for z — x and z — y. Hence

Sx e^+ß)l2el^y^2e^+ß)l2(2i)3sin^^siny-^sm1! ~ ß

2 2 2

ß-<* • y-a y-ß
> i sin —-— sin —-— sm -

2 2 2 '

and since 91 (z + x + y) cos a -j- cos ß + cos y we get for ö the value

ß — ol y — ol y — j_»
<5 2sin—-—sin—-—sin—-—(1 + cosa + cosß + cosy).

According to [B, 2.16 and 2.12] this can also be written as

ß-OL.y-oc.y-ßf ol ß y
o 4 sin —-— sin sin —-— 1 + 2 sin - • sin - • sm -2 2 2 \ 2 2 2

ß — ol y — ol y — ß
4sm ^ sin- sin^ Ml + r)

2 2 2

where r is the inradius of the triangle.

G. Corach, I.A.M., Buenos Aires
J. McGowan, University of Missouri, Columbia, Missouri, USA
H. Porta, University of Illinois, Urbana, Illinois, USA
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