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Aufgaben

Aufgabe 973. D, E, F seien die Ecken eines dem Dreieck ABC einbeschriebenen Dreiecks,
wobei De BC, E € CA, F € AB. Die Inhalte der Dreiecke DEF, AEF, BFD, CDE seien mit
S, S,, S,, S; bezeichnet. Nach P. Erdés und H. Debrunner gilt dann

N g min(sla SZs S3)
Man beweise oder widerlege folgende mégliche Verschirfungen dieser Ungleichung:
a) S=ZH(S,,S,,S,) b) $=2G(S,,S,,85;).

Dabei bezeichnen H das harmonische, G das geometrische Mittel.
D. P. Mavlo, Moskau, UdSSR

LITERATURVERZEICHNIS

1 Aufgabe 260: El. Math. 11, 20 (1956).
2 Bottema O. etal.: Geometric inequalities, Groningen 1969, p. 80.

Losung. Nehmen wir an, dass das Dreieck ABC den Inhalt 1 hat, und dass BD = 4 - BC,
CE=u-CAund AF=v-ABO< A uv<1).

a) Wir berechnen 3S/H — 3:

11
3S/H——3=S<—1—+—+——)—3

S, S 8
1 1 1
=1-5-5,-S)|—+—+—=—)-3
a-s-s-)(5+5v5)
___1—SZ_S3+1_S3—S1+1_S1_S2__6.
S S, S;
1-5,-S5 1—-(1—=viA—-u(1-4) 1-24 A
Nun ist 2 = ( L. ad )= + , USwW
Sy (1—-pv v 1—p

Also hat man

1-4 v 1—u A 1—v U
N T e I g | -
-3t o2 ) (B e ) (00 )

_A—A-v? (A—p-d A —v—p?
(= Ay A-wi A-vp -

N

mit Gleichheit genau, wenn A =pu=v=3.
Hiermit ist a) bewiesen.
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b) Wir berechnen S° — G3:
SP-GC={0-H - =+ ipv}* -1 -DA - —v)ipy,

und dieser Ausdruck ist negativ, wenn man (4, 4, v) = (3 — p, 3,3 + p) wéhlt fir irgend-
einp, 0 <p<i
Also ist b) widerlegt.

O. P. Lossers, Eindhoven, NL

Weitere Losungen sandten W. Janous (Innsbruck, A), Tsen-Pao Shen (Miinchen, BRD),
Hj. Stocker (Wadenswil), H. Widmer (Rieden).

Aufgabe 974. Es bezeichne g (r, n, k) die maximale Anzahl von r-dimensionalen Gebieten,
in die der r-dimensionale Raum durch n Biischel zu je k parallelen (r — 1)-dimensionalen
Hyperebenen zerlegt wird. Man bestimme g (r, n, k).

J. Binz, Bolligen

r(r
Losung. Wir behaupten, dass g(r,n, k) = > ( )k‘.

t=0\t
Offenbar ist die Formel richtig fiir r = 1 (n und k beliebig) und fiir n = 1 (r und k beliebig),
das heisst g(1,n,k) =1+ nk, g(r,1,k) =1 + k.
Der Beweis erfolgt bei festem k durch Induktion bzgl. r und n: Es seien g(r,n — 1,k) und
g(r —1,n — 1,k) bereits bestimmt, und wir haben eine Konfiguration von (n — 1) Bii-
scheln im r-dimensionalen Raum, die g(r,n — 1, k) Teilgebiete realisiert.
In jeder der neu anzubringenden k Hyperebenen vom letzten Biischel wird von dieser
Konfiguration eine Zerlegung in hochstens g(r — 1,n — 1,k) (r — 1) dimensionale Teil-
gebiete ausgeschnitten, das heisst, jede neuangebrachte Hyperebene vermehrt durch Ab-
spaltung die Anzahl der Teilgebiete um g (r — 1,n — 1, k) oder weniger. Folglich gilt

gir,nk)<g(r,n—1,k)+kg(r—1,n—1,k).

Gleichheit wird erreicht, wenn die n Normalen so gewéhlt werden, dass jedes r-Tupel von
ihnen linear unabhdngig ist und die neu anzubringenden k Hyperebenen keinen Punkt
gemeinsam haben mit der konvexen Hiille aller beschrinkten Teilgebiete der Anfangs-
konfiguration.

Da diese Situation immer realisiert werden kann, haben wir
gr,nk)y=g(@r,n—1,k)+kg(r—1,n—1,k),

woraus unsere Behauptung unmittelbar folgt.
O. P. Lossers, Eindhoven, NL

Aufgabe 975. Man ermittle die Anzahl t(m,n) aller Polynome n-ten Grades in einer
Unbestimmten mit teilerfremden Koeffizienten aus N,:= {1,2,...,m}.

R. Wyss, Flumenthal



186 El. Math., Vol. 43, 1988

Losung. P = {p,,p,, ..., p,} sei die Menge der Primzahlen in N,,.

[;{I Zahlen aus N, enthalten zumindest den Primfaktor p,, [pm
i ivj
Primfaktoren p; und p;, usw. Inklusion-Exklusion ergibt jetzt fiir die Polynome
(ag,ay,...,a,)eNrH!

] zumindest die

t(m,n)=mn+1- Z m]n+1+ Z _Ln__:|”+l___+“

pieP pi.pseP | PiDj

zuldssige Moglichkeiten.
Das Ergebnis ldsst sich mit Hilfe der Moebius-Funktion schéner schreiben:

t(m,n) = é‘,l u(i) ['—:1—]" .

J. Binz, Bolligen

Eine weitere Losung sandte W. Janous (Innsbruck, A).

Aufgabe 976. Fiir ne N bezeichne k(n) den maximalen quadratfreien Teiler (quadrat-
freien Kern) von n. Ferner sei

1
s == 1 — .
’ ,f,lim( p(p+ 1))

Man beweise

3 k(n/k(n) =Ba/m?)xInx + O(x).

A. Bege, Cluj, Ruménien

Losung. Setzt man h(n):= k(n/k(n)) und H (n):= Y u(d) h(n/d) fir alle ne N, wobei u die
din
Mobius-Funktion bedeutet, so gilt nach der Mobiusschen Umkehrformel

X h(m=%¥ X Hd= X H(d)[x/d]. 1)

n<x n<xdjn d<x

Mit k sind auch die zahlentheoretischen Funktionen h und H multiplikativ, so daB zur
weiteren Umformung von (1) die Werte von H fiir Potenzen von Primzahlen p zu
berechnen sind. Da h(p”) gleich 1 bzw. p ist, falls j = 0,1 bzw. j > 2, hat H (p/) die Werte
1 bzw. p — 1 bzw. O fiir j = 0 bzw. j = 2 bzw. je {1,3,4,...}. Damit gilt H(d) + 0 genau
dann, wenn d Quadrat einer quadratfreien natiirlichen Zahl ist, und (1) ldsst sich zu

2
S ht= 3 uemPHm)xm]=x ¥ M0 (-1 - R @

n<x ms<yx ms<syx
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umformen. Dabei hat man fiir das «Restglied» R (x) unter Beachtung der vorher festge-
stellten Ungleichungen 1 < H (m?) < m fiir quadratfreie me N die Abschitzung

0<R(¥)< Zl/_m=-;—[\/;]([\/;]+1)sx, (3)

falls nur x > 1 gilt.

Bezeichnet nun ¢ die Eulersche Phifunktion, so leitet man aus der bekannten Asymptotik
(vgl. etwa [1], S. 289)

X u(mo(m) =3an2y* +0(y*?),

m<y

o wie in der Aufgabenstellung, mittels partieller Summation die asymptotische Formel

2 y
> Hf:? pm)=6an"2[t"1dt+0(1)=6an"2logy + O(1) “)
1

ms<y

her. Beachtet man jetzt [] (p — 1) = ¢ (m) fiir quadratfreie me N, so ist wegen (4) die
plm
Summe im «Hauptterm» rechts in (2) gleich 3an~2log x + O (1) und man erhilt aus (2)

und (3) die behauptete Asymptotik.
P. Bundschuh, Ké6ln, BRD

LITERATURVERZEICHNIS

1 McCarthy P. J.: Introduction to Arithmetical Functions. Springer, New York etal. (1986).

Weitere Losungen sandten Kee-wai Lau (Hong Kong), O. P. Lossers (Eindhoven, NL).

Neue Aufgaben

Die Losungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift erbeten bis
10. Juni 1989 an Dr. H. Kappus. Dagegen ist die Einsendung von Losungen zu den mit
Problem ... A, B bezeichneten Aufgaben an keinen Termin gebunden.

Bei Redaktionsschluss dieses Heftes sind noch ungelost: Problem 601 A (Band 25, S. 67),
Problem 625B (Band 25, S.68), Problem 645A (Band 26, S.46), Problem 672A
(Band 27, S. 68), Aufgabe 680 (Band 27, S. 116), Problem 724 A (Band 30, S. 91), Pro-
blem 764 A (Band 31, S. 44), Problem 862 A (Band 36, S. 68).

Aufgabe 997. Let r,s,t > 1 be integers = 1 mod 3 and let

Ja=st+t+1, 3b=tr+r+1, 3c=rs+s+1.
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Prove or disprove that

(s
) (s)P ()

must be an integer.
M. S. Klamkin, Alberta, CD

Aufgabe 998. Fiir reelle a,b > 0 mit a % b sei

1 bb 1/(b—a)
F(a,b)z—é(};) .

Man zeige: Aus 0 <a < b, 0 <s <t und ¢ >0 folgt

Fb+tc) < F(a+tc)
F(b+sc) F(a+s,c)

H. Alzer, Waldbrol, BRD
Aufgabe 999. Die Zahlenfolge f:IN - R U {00, — o0} geniige der Rekursionsformel

_b+1-f(n—1)
f(n)= Py m—

nz2)

mit konstantem belR. Zeige: Zu jeder natiirlichen Zahl m = 2 und beliebig gegebenem
Startwert f (1) ldsst sich ein b so finden, dass f(n) periodisch mit der Periodenlinge m
wird.

J. Binz, Bolligen

Aufgabe 1000. Man gebe die Losung der Rekursionsgleichung
(q—j+1
> (—1)'( | )aq_j=o, q>0 &)
j=0 J

mit o, = 1 in geschlossener Form an.
A. Muiiller, Ziirich
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