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6) In order to arrive to a better refinement, we can consider the relation (3) for / (t) 1/t,
k 2(0<a<b).lt results L (a, b) < §(a + b)3/(a2 + ab + b2). Letting a \fx, b \fy,
this is just one of the Lin [3] and Rüthing [8] inequalities:

L(x,y)<r" 2^1 (12)

The author wishes to thank the referee for his valuable suggestions.

Joseph Sändor,
Jud. Harghita, Romania
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Kleine Mitteilungen

Eine komplexe Ungleichung aus elementarer Sicht

Aus der Operatorentheone ist folgende Ungleichung bekannt:

Für f(zx,z2) 1 +2(zx + z2) + (zx - z2)2 mit zx,z2eC und \zx\ \z2\ 1 gilt

\f(zuz2)\ < 5. (1)

Man kann (1) mit Hilfe der Ableitungen beweisen, indem man zx exp(i(px),

z2 exp(i<p2) setzt und dann die Paare <px, q>2 sucht, für die

^-\f(^z2)\2=^-\f(zX9z2)\2 0
ö<px Ö(f>2
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gilt. Dieser Beweis führt aber zu langen trigonometrischen Rechnungen. Deshalb wollen
wir hier einen synthetischen Beweis ohne Benutzung partieller Ableitungen geben.
Setzt manpa(z) 1 + 2(z + a) + (z — a)2 für ein a exp(iS)9 so ist nachzuweisen, dass

max \pa(z)\ 5 ist. Wegen \pa(z)\ \pä(z)\ kann man 0 < S < n voraussetzen. Für die
l_l i
Nullstellen zl9z2 des Polynoms pa(z) verifiziert man

zx exp(iS) — 1 + 2exp( i—-— 1,

z2 exp(iS)- 1 -2exp(i——- j;

dabei lässt sich für ein q e [0,2] exp (i 8) — 1 q exp (i —-— schreiben. Somit bekommt
man \ 2 /

zx =(g + 2)expli—j- )>

die Punkte z x, z2 liegen also auf der Geraden z X exp I i —-— 1, X 6 R, und zwar so, dass

der Nullpunkt mit einem der Punkte zusammenfällt oder zwischen ihnen liegt. Es gelten
\zx - z2\ 4 und |pfl(z)| \z - zx\\z - z2\.

Um unsere Ungleichung zu beweisen, können wir einfach das folgende elementargeometrische

Problem lösen:

Gegeben seien eine Strecke AB der Länge 4 und ein Kreis E mit Zentrum K auf AB
und Radius 1. Zu zeigen ist, dass für alle Punkte P auf E

(AP)(BP) < 5 (2)

gilt.

Es bezeichnen M den Mittelpunkt von AB, p die Länge (MK) und cp den Winkel zwischen
KB und KP (siehe Figur). Aus Symmetriegründen können wir uns auf den Fall 0 <; p < 2

beschränken.
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Mit dem Cosinussatz erhält man (AP)2 (2 + u)2 + 1 + 2(2 + p) coscp und
(BP)2 (2 - u)2 + 1 - 2(2 - p)cosq>; also ist (2) äquivalent zu

Wß (cos) (AP)2 (BP)2 R cos2 cp + S cos cp + T < 25 (3)

mit R - 4(4 - p2)9 S 4p(p2 -3)9T (4- p2)2 + 2p2 + 9.

Für p 2 wird W2 (cos <p) 8 cos cp + 17 und (3) gilt offensichtlich. Es sei nun 0 < p < 2.

Aufgrund der elementaren Theorie der quadratischen Gleichungen weiss man, dass

S

2Rj
,2(A ,,2 _1C\ „ i _ „2

J^(cos<p) < W(£) gilt, wobei ^ max( 1, — — ist. Demnach gelten

«;(-„ _ „, (- A) 25+ü_«^_ rür _ e££ <, und

1 2

^M(cos^) < w;(l) (3 + a*)20* - l)2 für -^-U\> 1.
2 4 — pz

Da in beiden Fällen die rechtsstehenden Ausdrücke den Wert 25 nicht übertreffen können,

ist (2) bewiesen.

Der Beweis hat die «extremalen» Paare (zX9z2) der Ungleichung (1) mitgeliefert, nämlich
(1,1), (1,-1) und (-1,1).

N. Danikas, Fachbereich Mathematik, Aristoteles Universität
Thessaloniki, Griechenland
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On Fermat's Last Theorem

In this note we shall prove the following theorem which pertains to Fermat's Last
Theorem.

Theorem: Let xn +yn zn where x, y9 z and n are positive integers such that x < y < z and
n _> 2, then

z<x1 + i^. (1)

Proof: As z > y9 we have z > y +1, and so

xn+yn zn>(y + l)n
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