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Some integral inequalities

The aim of this note is to prove some integral inequalities and to find interesting
apphcations for the logarithmic and exponential functions. These relations have some
known corollaries ([3], [4], [5], [8]).

Theorem 1. Let f:[a9b] -> R(a < b) be a differentiable function with increasing (strictly
increasing) derivative on [a,b]. Then one has the following inequalities

b fa + b\
j/W^^^-^/^-y-J (1)

2- J/(0* < (b - a)f(^/a~b) + (y/b - yfi)(y/b f (b) + Ja f (a))
a (<)

(Here0<a<b). (2)

Proof. The Lagrange mean-value theorem implies: f (y) — f(x) >(y — x) f'(x) for all
(>)

x,ye[a9b]. Take x (a + b)/2 and integrate the obtained inequality:

i.e. relation (1).

In order to prove (2) consider as above the inequality f(y) — f (x) < (y — x) f'(y) with

x y/äb. Integrating by parts on [a,b] we get
(<)

)f(y)dy -(b- a)f(Ja~b) <(y- Jäb) f(y)\ -)f(y)dy
a (<) a a

which easily implies (2).
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Remark. Inequality (1) is called sometimes "Hadamard's inequality" and it is valid for
(a + b\

convex functions / as well with the same proof, but using /| instead of
fa + b\ V

/' (a + b\r'( J (see also [1]).

In apphcations is useful the following generalization of (1) (see [9])

Theorem 2. Let f: [a, b]->$Lbea2 k-times differentiable function, having continuous 2 k-th
derivative on [a,b] and satisfying f(2k)(t)>0 for te(a,b). Then one has the

inequality: (>)

\f(t)dt > £ t*-^-1 fi2,-»(tl±*\ (3)

(a + b
Proof. Apply Taylor's formula (with Lagrange remainder term) for / around I

\( a + b\2m-i
and integrate term by term this relation. Remarking that J I x I dx 0 for

m 1,2,3,..., we obtain

223!if {x)dx (b-a) f [-—-)+—j—-/"1

!*-2(2fc-l)!i V 2
+ i. (2k)l

J ig+ '"+ 22k-2(2k-l)l

Taking into account f(2k)(£.) > 0, we get the desired inequality (3).
(>)

1

Applications. 1) Let a > 0, b a + 1, ft (t) - and f2(t) — Inf in (1). We can easily
deduce the following double inequality:

-Tm'VtW1^ (4)

containing inequalities studied by E. R. Love [4] and G. Pölya - G. Szegö [7]. Using
Bernoulli's inequality we have (1 + 1/(2 a + 1))5/2 > 1 + 5/(4 a + 2) > 1 + 1/a, for a > 2.

Hence we have:

/ j\a + 2/5 / 4\a+l/2
(1+_j <e<{i+a) (^2) (5)
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2) By repeating the same argument in (3) for k 2, b a + 1 (a > 0), fx (t) -,
fi (0 —hit, we obtain:

^±le6{2a+ir< e h+L.eWa + ir, (6)2a+ 1 / IV V a w

This inequality implies for a > 0 e.g. that

eTa\X ~~a)
<

6
< g2^V ~2^J

IV
1 +

aj

(7)

and so

_4n 0~nln^l+^l 0(l/n)

which can be compared with the more familiär lim An 0.
1 n-+oo

3) Apply (1), (2) for f (t) - to deduce
t

,— a + b
y/ab<L(a,b)<—-—, (8)

b-aWhere L (a, b) —— — denotes the logarithmic means (see [2], [3]). The right-hand
ln b — ln a

side of this inequality is due to B. Ostle and H. L. Terwilliger [6]. The left-hand inequality
was stated by B. C. Carlson [2]. (8) was rediscovered also by A. Lupa§ [5].
4) Select f(t)= —Int in (2). This application yields the following improvement of the

right-hand side of (8):

L(a,b)<{^ + Jdb\/2. (9)

5) An interesting remark is that one can use (8) (and also (9)) to obtain refinements of this
inequality. Indeed, let us consider a y/x, b yfy in (8). It follows that

(^fxy<4y/xy[^—2~) <L(X'^< l —^rL-\ <-w-' (10>

With the same argument we can derive (on base of (9)):

L(x,y)<l(^ + ^2 + l(v^ + v^)V^- dD
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6) In order to arrive to a better refinement, we can consider the relation (3) for / (t) 1/t,
k 2(0<a<b).lt results L (a, b) < §(a + b)3/(a2 + ab + b2). Letting a \fx, b \fy,
this is just one of the Lin [3] and Rüthing [8] inequalities:

L(x,y)<r" 2^1 (12)

The author wishes to thank the referee for his valuable suggestions.

Joseph Sändor,
Jud. Harghita, Romania
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Kleine Mitteilungen

Eine komplexe Ungleichung aus elementarer Sicht

Aus der Operatorentheone ist folgende Ungleichung bekannt:

Für f(zx,z2) 1 +2(zx + z2) + (zx - z2)2 mit zx,z2eC und \zx\ \z2\ 1 gilt

\f(zuz2)\ < 5. (1)

Man kann (1) mit Hilfe der Ableitungen beweisen, indem man zx exp(i(px),

z2 exp(i<p2) setzt und dann die Paare <px, q>2 sucht, für die

^-\f(^z2)\2=^-\f(zX9z2)\2 0
ö<px Ö(f>2
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