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Some integral inequalities

The aim of this note is to prove some integral inequalities and to find interesting
applications for the logarithmic and exponential functions. These relations have some
known corollaries ([3], [4], [5], [8]).

Theorem 1. Let f:[a,b] = R (a < b) be a differentiable function with increasing (strictly
increasing) derivative on [a,b). Then one has the following inequalities :

[roaz6-as(*E) )

b
2-[f@dt < b — 0 f(/ab) + /b= JO(/bfB) +/af (@)
(Here 0 < a < b). )

Proof. The Lagrange mean-value theorem implies: f (y) — f(x) = (y — x) f'(x) for all
)
x,y€[a, b]. Take x = (a + b)/2 and integrate the obtained inequality:

2 b b\ ¢ b
[rovay-e-ar(*32) = r (%5 )3(r-23)ar-o.

) a

i.e. relation (1).

In order to prove (2) consider as above the inequality f (y) — f (x) < (y — x) f'(y) with
x = ./ab. Integrating by parts on [a, b] we get )

b b b
§fdy — (b — a)f(\/c’ﬁ»)(g)(y —Jab) f = {f»dy

which easily implies (2).
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Remark. Inequality (1) is called sometimes “Hadamard’s inequality” and it is valid for

+ b\ .
instead of

a
convex functions f as well with the same proof, but using fj,(
a+b
f’ (————2———> (see also [1]).

In applications is useful the following generalization of (1) (see [9])

Theorem 2. Let f:[a, b] — R be a 2 k-times differentiable function, having continuous 2 k-th
derivative on [a,b] and satisfying f®(t) >0 for te(a,b). Then one has the in-
equality : )

£ (b—aPrt o fa+b
[roaz & g5 (F) o

a+b
Proof. Apply Taylor’s formula (with Lagrange remainder term) for f around ( 5 )

a

a+ b\2m-1
and integrate term by term this relation. Remarking that | (x — -——2——) dx = 0 for

m=1,2,3,..., we obtain

a+b\ (b—a) [(a+b
yfqu—w~mf( )+ 223,f( 2)

o+ @0 (&) dx.

(b — a)?*1 o {a+b\ b(x—(a+ b))
22"‘2(2k——1)!f(2k ”( 2 )” 2 k)!

Taking into account f©@% (&) > 0, we get the desired inequality (3).

>)

1
Applications. 1) Leta >0, b=a + 1, f,(t) = - and f,(t) = — Int in (1). We can easily
deduce the following double inequality:

2a+2 e 1
2a+1<< 1)°<\/1+5 @
14-
a

containing inequalities studied by E. R. Love [4] and G. Polya — G. Szego [7]. Using
Bernoulli’s inequality we have (1 + 1/2a + 1))¥2>1 + 5/(4a+2) > 1 + 1/a,fora > 2.
Hence we have:

1 a+2/5 1 a+1/2
<1+5) <e<(1+;) (@a=2) (5)
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. ) 1
2) By repeating the same argument in (3) for k=2, b=a+1(a@>0), f,(t)=-

f,(t) = — Int, we obtain: t
- 1
za+ze6(2a+1)2<_L_< 1+_1_ '63(2a+1)2, (6)
2a + 1 ( 1)0 .
14—
a
This inequality implies for a > 0 e.g. that
1 1 1 1
— 1 —-= LN PN
e2a< a) < ____e]__‘; < eZa( 2a> (7)
14+ -
a
and so

A,=|z—nlne/| 1+ - =0(1/n)
2 n

which can be compared with the more familiar lim 4, = 0.

1 n— o
3) Apply (1), (2) for f (t) = — to deduce
t
,/ab<L(a,b)<a;b, (8)

-2 denotes the logarithmic means (see [2], [3]). The right-hand
Inb—1Ina

side of this inequality is due to B. Ostle and H. L. Terwilliger [6]. The left-hand inequality
was stated by B. C. Carlson [2]. (8) was rediscovered also by A. Lupas [5].

4) Select f (t) = — Int in (2). This application yields the following improvement of the
right-hand side of (8):

L(a,b) < (“—?;-—13 + \/EE)/z. 9)

Where L(a,b) =

5) An interesting remark is that one can use (8) (and also (9)) to obtain refinements of this
inequality. Indeed, let us consider a = \/x, b = \/;: in (8). It follows that

.
\/;} < 4\/7}, (if.}&) < L(x,y) < (M)z < f_+_¥_ (10)

2

With the same argument we can derive (on base of (9)):

2
L(x,y)<-;—<[5—;’—‘—@> + (DY (11)



180 El. Math.,, Vol. 43, 1988

6) In order to arrive to a better refinement, we can consider the relation (3) for f (t) = 1/t,
k=2(0 <a <b).Itresults L(a,b) < 3(a + b)*/(a> + ab + b?). Lettinga = 3/x,b = 3\/;,
this is just one of the Lin [3] and Riithing [8] inequalities:

(’\/; ;r W)3 (12)

L(x,y) <

The author wishes to thank the referee for his valuable suggestions.

Joseph Sandor,
Jud. Harghita, Romania
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Kleine Mitteilungen

Eine komplexe Ungleichung aus elementarer Sicht
Aus der Operatorentheorie ist folgende Ungleichung bekannt:
Fir f(z,,2z;) =1+ 2(z; + z2) + (z; — z,)*> mit z;,z,€C und |z,| =|z,| =1 gilt

|f(z1,2)) < 5. 1)

Man kann (1) mit Hilfe der Ableitungen beweisen, indem man z, = exp(i¢,),
z, = exp (i ¢,) setzt und dann die Paare ¢, , ¢, sucht, fiir die

0 0
— | f(z1,2)1> = —|f (2;,2)> = 0
a(pl f( 1242 a(pz 1542
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