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3. If j = 2°p%t ... plr with a > 2, then

D(j,n) =min{klk >2n, k=por2pwithp*E1(modp)i=1,...,r,
and p = 3 (mod 4)}.
In [6] a proof is given for j = 3 and j = 6, and all n, using the theory of binary quadratic
forms.
P. Schumer, Department of
Mathematics and Computer Science,
Middlebury College

J. Steinig,
Section de Mathématiques
Université de Genéve
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Un probléme de probabilité maximale

Dans un récent article [1], on trouve le théoréme suivant:

Théoréme: Si X,,..., X, sont des variables aléatoires indépendantes, distribuées selon
des lois géometriques de parameétres r,...,r,, le maximum de la probabilité
P(X,+ X, + .-+ X, =i)est atteint, pour net i donnés, lorsque r, = --- =r, = if(n + i).

Nous donnons ici une démonstration élémentaire du théoréme. Soit F I’ensemble des lois
de probabilités sur N avec la convolution p*q (i) = X p(j) q(i —j). Soit g,(i) = s - r* (avec
s =1 —r)laloi géométrique de paramétrer = Oet G, = {g, 1,*J,(2* " ** *J, w} '€nsemble
des convolutions de n lois géométriques.

Lemme 1: Si p € G, et que 'on définit Ap(i) = p(i) — p(i — 1), il existe iy = iy (p) tel que
Ap(i) = 0 pour i < i, et Ap(i) < 0 pour i = i, (unimodularite).
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Preuve: On suppose, par hypothése d’induction, que p € G, est unimodulaire et 'on
consideére g = p*g,.

On trouve
q@)=sp@ +rq@i—1) )
r4q(i) = s(p(i) — q(i)). 2

Donc 4p(i)=20<p(i) =4q(). St i<iy(p), on a q(i) < max {p(j):j =i} =p(i), donc
Aq(i) = 0. Posons iz(q) =min{i:4q(i) <0} =i,(p). Sl existait des j > iy(q) avec
4q(j) = 0, on pourrait choisir le plus petit d’entre eux et on aurait g(j — 1) £ q(j) < p(j)
et p(j) <p(j —1) puisque iy(q) = iy(p), donc 4q(j —1) = 0 (cf. 2), ce qui contredit la
minimalité de j.

Lemme 2: Pour p e G, et i € N donneés, il existe au plus un r > 0 tel que p(i) = p*g, (i).

Preuve: Soit r une solution, g =p#*g,, F>ret §=p*g;.

Le lemme 1 et (2) montrent que p(i) = q(i) implique i < iy(g), donc q(j —1) < q(j) =< p(j)
pour j < i, donc

g =4 =F—=n[p()—q(G -1 +7lg( -1 —q(—DI=7[g( —1) —q(j —1)] et
on démontre par induction sur j(a partir de q(0)—g0)=F—r)p(0)>0) que
q(j) — 4(j) > 0 pour j < i, donc que 4()) # p(i) = q()).

Preuve du théoréme: On utilise les identités

g,*g,() =s*(i +)r' )
d : N -1 : :
3—;9,(1)=S'l'r —r'=s""[(g*g,(—-1)—g,0)] (4)

Si p(i) est maximal pour p = p*g,(r > 0), on doit avoir

d
0= E;ﬁ*gr(l) = s_l [p-*gr*gr(i _1) _p*gr(l)] = s—l [p*gr(l _1) '—p(l)] (5)

Il résulte de (1) et de p*g,(i —1) = p(i) que p(i) = p*g,(i).
Le lemme 2 implique alors que tous les facteurs non trivials de p sont égaux.

Si p est produit de m facteurs g,, p est une loi binomiale-négative avec p(i) = m+ il B 1)
s™r.

La condition p(i) = p*g,(i—1) (cf. 5) donne mr/i=s=1—r, donc r=i/(m+i) et
m+i—1

pl) = n"i'/(n + i)"*', expression que nous notons M,(m). 1l suffit finalement

de démontrer que M;(m) < M;(m +1) ouque [m/(m + )" ** < [(m + i)/(m + i + 1" "'+,
Cela se déduit du fait que f(x)=[x/(x+1)**!, de dérivée logarithmique
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x~ ! +logx —log(x +1) >0, est monotone croissante. Il faut donc, pour obtenir
max {p(i); p€ G,}, choisir m =n et r = i/(n + i).

Remarque: Le théoréme a un analogue sous forme continue: Si f est convolution de n
densités exponentielles g (x) = se™**, la plus grande valeur de f(x) est atteinte lorsque

tous les facteurs ont le méme paramétre s = n/x.

H. Carnal, Institut fiir math. Statistik der Universitidt Bern
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Remarks on the note ‘“Generalization of a formula
of C. Buchta about the convex hull of random points”

For any convex body K in the d-dimensional Euclidean space E? (d = 2) let V,/”(K) be the
expected volume of the convex hull H, of n independent random points chosen identically
and uniformly from the interior of K.

For arbitrary plane convex sets, respectively three-dimensional convex bodies, Buchta [2]
proves the relationships

Vi2(K) =2 V3P (K) (1)
and

VE(K) =32 V(K). 2

In a recent note [1] we generalize Buchta’s formulae (1) and (2) to

m-—1
Vz(;i)(K) = 3 Oymogk+1 Vz(r%.)—zkﬂ(K) m=273,... (3)
k=1
and
m—1
V2(31)+1(K) = k§1 Bom-2x+2 Vz(,i)- w+2K) m=23,..., 4)

where a,,,_ .+, and B,,,_ 5+ » are constants defined by certain recursion formulae (cf. [1],
formulae (1.4'), (1.4”), (1.5") and (1.5")).
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