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3. If j 2ap\' ...parr with a > 2, then

D(j,n) min {fe|fe >2n,k=por 2p with p =f= 1 (mod/?,), / 1,..., r,
and p _= 3 (mod 4)}.

In [6] a proof is given for 7 3 and/ 6, and all n, using the theory of binary quadratic
forms.
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Un probleme de probabilite maximale

Dans un recent article [1], on trouve le theoreme suivant:

Theoreme: Si Xx,...,Xn sont des variables aleatoires independantes, distribuees selon
des lois geometriques de parametres rx,...9rn9 le maximum de la probabilite
P(XX + X2 H + Xn i) est atteint, pour n et 1 donnes, lorsque rx • • • rn i/(n + i).

Nous donnons ici une demonstration elementaire du theoreme. Soit F l'ensemble des lois
de probabilites sur N avec la convolution /?*q(i) T,P(J)q(i —J)- Soit gr(i) s-rl (avec
5 1 — r) la loi geometrique de parametre r 0 et Gn {gr(X) * 0r(2)* * • * * 9roo) l'ensemble
des convolutions de n lois geometriques.

Lemme 1: Si p e Gn et que Ton definit Ap(i) =p(i)—p(i — 1), il existe i0 i0(p) tel que
Ap(i) 0 pour i < i0 et Ap(i) < 0 pour i i0 (unimodularite).
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Preuve On suppose, par hypothese d'mduction, que p e Gn est ummodulaire et l'on
considere q=p*gr
On trouve

q(i) sp(i) + rq(i-l) (1)

rAq(i) s(p(i)-q(i)) (2)

Donc Ap(i) — 0op(i) ^ q(i) Si i < i0(p), on a q(i) ^ max {p(j) J ^__ *} /7(0> donc
Aq(i) g; 0 Posons i0(q) min {. _d<gr(0 < 0} ^ i0(/?) S'il existait des / > i0(q) avec

Aq(j) 0, on pourrait choisir le plus petit d'entre eux et on aurait q(j — 1) q(j)Sp(j)
et PÜ) <P(j —1) puisque i0(g) ^ i0(/?), donc Aq(j — 1)^0 (cf 2), ce qui contredit la
mimmahte de /

Lemme 2: Pour p e Gn et i e N donnes, il existe au plus un r > 0 tel quep(i)=p*gr (i)

Preuve Soit r une Solution, q= p*gr9 r> r et q= p*g?
Le lemme 1 et (2) montrent quep(i) q(i) implique i < i0(q), donc q(j —l)^q(j)<Lp(j)
pourj Sh donc

«0)-«0) (r-r)[pO)-«0-l)] + rbO-l)-«0-l)]^rbO-l)-«0-1)1 et

l'on demontre par induction sur /(a partir de q(0) — q(0) (r — r)p(0)>0) que
q(j) ~ q(j) > 0 pour/ ^ i, donc que q(i) ^p(i) <?(0

Preuve du theoreme: On utilise les identites

gr*gr(i) s2(i+l)rl (3)

jr0r(i) s i r'-'-r^s-'Kg^g^i-V-gM (4)

Si p(i) est maximal pour p — p*gr(r > 0), on doit avoir

0 TP*9M S'1 [P*gr*9r(t-1) -P*9r(t)] S"1 [P*flfrO -1) -/>(*)] (5)
ar

II resulte de (1) et de p*gr(i —l)=p(i) que p(i) =p*gr(i)
Le lemme 2 implique alors que tous les facteurs non tnvials de p sont egaux

Si p est produit de m facteurs gr,p est une loi binomiale-negative avec p(i) I 1

smri \ l

La condition p(i) p*gr(i — l) (cf 5) donne mr/i s 1 — r, donc r */(m + i) et

m + i— 1 \ „ .„ ._,+,/?(*) I ] nnil/(w + 0" » expression que nous notons Mx(m) II suffit finalement

de demontrer que M, (m) < M, (ro +1) ou que [m/(m +l)]m + i <[(m + i)/(m + i +1 )]m+1 + *

Cela se deduit du fait que f(x) [x/(x +l)]x+19 de derivee loganthmique
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x"1 + logx— log(x+ 1) > 0, est monotone croissante. II faut donc, pour obtenir
max {p(i); p e Gn}, choisir m n et r i/(n + i).

Remarque: Le theoreme a un analogue sous forme continue: Si / est convolution de n

densites exponentielles gs(x) se~sx, la plus grande valeur de f(x) est atteinte lorsque
tous les facteurs ont le meme parametre s n/x.

H. Carnal, Institut für math. Statistik der Universität Bern
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Remarks on the note "Generalization of a formula
of C. Buchta about the convex hüll of random points"

For any convex body K in the d-dimensional Euchdean space Ed (d 2) let Vnid)(K) be the
expected volume ofthe convex hüll Hn of n independent random points chosen identically
and uniformly from the interior of K.
For arbitrary plane convex sets, respectively three-dimensional convex bodies, Buchta [2]

proves the relationships

Vl2\K) 2V?\K) (1)

and

V™(K) \V™{K). (2)

In a recent note [1] we generalize Buchta's formulae (1) and (2) to

V?M =mZ*2m_2k+lV%_2k+l(K) m 2,3(... (3)

and

eiW MIL-2l+2e,+2W m 2,3,... (4)

where a2m_2fc +1 and ß2m-2k + 2 are constants defined by certain recursion formulae (cf. [1],
formulae (1.4'), (IA"), (IS) and (1.5")).
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