
Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 43 (1988)

Heft: 5

Artikel: On the incongruence of consecutive fourth powers

Autor: Schumer, P. / Steinig, J.

DOI: https://doi.org/10.5169/seals-40810

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-40810
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


El Math Vol 43 1988 145

On the incongruence of consecutive fourth powers

1. Introduction

In [1], Arnold, Benkoski and McCabe solve the following problem Given an integer
n > 1, what is the smallest positive integer fe such that 12,22, n2 are all incongruent
modulo fe? Let D(n) denote this integer, they show that

D(n)

1, if n 1,

2, if n 2,

9, if n 4,

min {fe | fe > 2 n and fe p or 2p with p prime}, for all other n

Their proof, based on Bertrand's postulate, is neat and elementary Their problem
suggests the following generalization Given integers n > 1 and j > 1, determine

D(j,n) min {fe > 1 \aJ =j= bJ (modfe) if 1 < a < b < n}

If7 2, D (j, n) D (n) In this article, we determine D (2h, n) for all n > 1 and h > 2 The
proofs are elementary, and use an extension of Bertrand's postulate to primes p 3

(mod 4)
In the last section we mention what is known about D(j,n) for other values of;

2. The Theorem

We shall prove the following

Theorem. For h>2,we have

1, if n l,

»(2\n) { \ J^J (21)

18, if n 8,

min {fe | fe > 2 n and fe p or 2p, with p 3 (mod 4)}, for all other n

Here and in the sequel, p denotes a prime, we will always assume n > 2

Following the notation in [1], we denote the quantity on the nght side of (2 1) by B(2h, n)

The proof that D(2\n) B(2h,n) proceeds by estabhshing the following üve lemmas

Lemma 1. B(2h,n) < 4nfor n > 1

Lemma 2. Ifp>2nandp 3 (mod4), then D(2\n) < p
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Lemma 3. If2p>2nandp 3 (mod 4), then D (2h, n)<2p.

Lemma 4. D(2h,n)>2nforn>3.

Lemma 5. If n > 5, n + 8 and 2n < m < B(2h,n), then D(2h, n) + m.

3. The proofs

We shall use the following Observation several times: if n > 2, p 3 (mod 4) and

fl2h 52h(modm), (3.1)

with m p, 2 p, p2 or 2 p2, then

a2*-* b2h-l(modm), (3.2)

and by induction,

a2 52(modm). (3.3)

Indeed, consider the case m p:

a2h - b2h (a2h-1 - b2h-')(a2h-' + fr2""1),

the second factor on the right side is a sum of two Squares and p 3 (mod 4). Hence if
p divides (a2h_1 + b2h~l), then p\a and p\b [5, Theorem 367].

Similarly, if (3.1) holds (mod 2p) then so does (3.2) because then a b (mod 2).

And if (3.1) holds with m p2 or m 2/?2, then (3.2) does also, since p2 \ a2h~l if p\ a and

n>2.

Proof of Lemma 1. For 1 < n < 4 and n 8, B(2h,n) < 4n by inspection. For n > 5,

n 4= 8, this inequality follows immediately from the existence, for each integer x > 4, of
a prime p 3 (mod 4) such that x < p < 2 x. An elementary proof of this extension of
Bertrand's postulate (and of similar results for other arithmetical progressions) was given
by Erdös [4], after Breusch [3] had proved it using complex variable techniques.

Proof of Lemma 2. Suppose D (2h, n) > p. Then, for some integers a and b with
1 < a < b < n, (3.1) would hold with m p. But then, since/? 3 (mod 4), we also would
have (3.3) with m p. And this is impossible, because 1 <b — a < a + b <2n <p.

Proof of Lemma 3. If D(2h,n) > 2p then (3.1) holds, with m 2 p, for some a, b with
1 < a < b < n. But then a2 b2 (mod 2p), which is impossible since
1 <b - a <a +b <2n <2p.
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Proof of Lemma 4. Clearly, D (2h, n) > 3 if n > 3. Any integer fe such that 3 < fe < 2 n

can be written k a + b, with 1 < a < b < n. Then a2h b2h (mod fe), since

(a + b)\(a2h - b2h); hence D(2*,n) + fe.

Proof of Lemma 5. By definition of B (4, n), the assumption 2 n < m < B (4, n) entails
m + p and m + 2 p, if p _= 3 (mod 4). We accordingly have 5 possibilities, if n > 2:

(1) m rs, r > s >2, r s (mod 2),

(2) m 2rs, r>s>3, r s=l (mod2),
(3) m p or 2p, p 1 (mod 4),

(4) m />2,

(5) m 2/72.

Since (3.2) implies (3.1) for any modulus m and any n > 1, it suffices to show that in
each case there are integers a, b such that 1 < a < b < n and a2 b2 (mod m) or
a4 _== fr4 (mod m).

In cases (1) and (2), take a \(r — s), b \(r + s). Then 1 < a < b and a2 b2 (modm).
Also, ^(r + s)<|rs + l since r > 2 and s > 2 (write 2 (r — s) < s (r — 2)). Hence
b < ±rs + 1 < \m + 1; since m < B(2h,n) < 4n, we have b < n.

In case (3), m is a sum of two Squares [5, Theorem 366], say m — a2 + b2, with 1 < a < b.

Further, b2 < m < B(2h,n) < 4n, whence b < n if n > 4. And m a2 + b2 implies
a4 b4 (mod m).

In case (4), take a p, b 2p. Then 1 < a < b and a2 b2 (mod m). Also,
b 2p 2 yjm < 4 -y/n, whence b < n if n > 16.

In case (5), a p and b 3 p satisfy 1 < a < b and a2 b2 (mod m). And
fr 3 -y/m/2 < ^/lSn, whence b < n if n > 18.

In order to complete the discussion of cases (4) and (5) we observe that 10 < m < 38 if
5 < n < 17, since B(2h, n) is non-decreasing (in n) and ß(2\l7) 38. If 10 < m < 38 then
m 25 in case (4), m 18 in case (5). But D(2h, n) + 25 if n > 4 since 34 44 (mod 25),

D(2h,n) + 18 if n > 9 since 32 92 (mod 18), D(2",n) + 18 if n < 7 by Lemma 3.

Proof of the Theorem. By Lemmas 2 and 3 we have D (2h, n) < B (2h, n) for n 4= 1,2,4,8.
By Lemmas 4 and 5, D (2*, n)>B (2h, n) for 5 < n < 7 and n > 9. This proves the theorem
for n > 5, n =# 8.

Trivially, D(2\l) 1 and D(2\2) 2; D(2*,3) 6 by Lemmas 3 and 4. It remains to
determine D(2",4) and £>(2*,8).

By Lemma 4, £>(2\8) > 16; D(2h, 8) > 18 since 42 82 (mod 16) and l4 44 (mod 17).

In fact, D(2\ 8) 18. Indeed, if (3.1) holds for m 18, then (3.3) does also, hence a2 b2

(mod 9) and a b (mod 2). But if a2 b2 (mod 9) and 1 < a < b < 8 then a + b 9,

a^b (mod 2).

For D(2*,4), Lemma 4 yields D(2",4) > 8; and D(2\4) + 8 since 24 44 (mod 8). An

argument similar to the one used for D(2h, 8) will show that D(2*,4) 9 (start from (3.1)

with m 9).
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4. Other results
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The following table gives the values of D (j, n) for 2 < j < 30, 1 < n < 20

J\n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 2 6 9 10 13 14 17 19 22 22 26 26 29 31 34 34 37 38 41

3 2 3 5 5 6 10 10 10 10 11 15 15 15 15 17 17 22 22 22

4 1l 2 6 9 11 14 14 18 19 22 22 31 31 31 31 38 38 38 38 43
5 1 2 3 5 5 6 7 10 10 10 13 13 13 14 15 17 17 19 19 21

6 l 2 6 10 10 17 17 17 22 22 22 29 29 29 34 34 34 41 41 41

7 l 2 3 5 5 6 7 10 10 10 11 13 13 14 15 17 17 19 19 21

8 l 2 6 9 11 14 14 18 19 22 22 31 31 31 31 38 38 38 38 43

9 2 3 5 5 6 10 10 10 10 11 15 15 15 15 17 17 22 22 22

10 l 2 6 9 10 13 14 17 19 23 23 26 26 29 34 34 34 37 38 43

11 l 2 3 5 5 6 7 10 10 10 11 13 13 14 15 17 17 19 19 21

12 2 6 11 11 22 22 22 22 22 22 46 46 46 46 46 46 46 46 46
13 2 3 5 5 6 7 10 10 10 11 13 13 14 15 17 17 19 19 21

14 l 2 6 9 10 13 14 17 19 22 22 26 26 31 31 34 34 37 38 41

15 l 2 3 5 5 6 10 10 10 10 15 15 15 15 15 17 17 23 23 23

16 l 2 6 9 11 14 14 18 19 22 22 31 31 31 31 38 38 38 38 43
17 l 2 3 5 5 6 7 10 10 10 11 13 13 14 15 17 17 19 19 21

18 l 2 6 10 10 17 17 17 22 22 22 29 29 29 34 34 34 41 41 41

19 l 2 3 5 5 6 7 10 10 10 11 13 13 14 15 17 17 19 19 21

20 l 2 6 9 14 14 14 18 19 23 23 38 38 38 38 38 38 38 38 43

21 l 2 3 5 5 6 10 10 10 10 11 15 15 15 15 17 17 22 22 22

22 l 2 6 9 10 13 14 17 19 22 22 26 26 29 31 34 34 37 38 41

23 l 2 3 5 5 6 7 10 10 10 11 13 13 14 15 17 17 19 19 21

24 l 2 6 11 11 22 22 22 22 22 22 46 46 46 46 46 46 46 46 46

25 l 2 3 5 5 6 7 10 10 10 13 13 13 14 15 17 17 19 19 21

26 l 2 6 9 10 13 14 17 19 22 22 26 26 29 31 34 34 37 38 41

27 l 2 3 5 5 6 10 10 10 10 11 15 15 15 15 17 17 22 22 22

28 l 2 6 9 11 14 14 18 19 22 22 31 31 31 31 38 38 38 38 46

29 l 2 3 5 5 6 7 10 10 10 11 13 13 14 15 17 17 19 19 21

30 t 2 6 10 10 17 17 17 23 23 23 29 29 29 34 34 34 46 46 46

Further Computer assisted calculations have shown that D(100,100) 206,
D (600,600) 1223, D(1000,1000) 2003 and D(2000,2000) 4003
The following results are proved m [2] for sufficiently large n
Let px, ,prhe odd primes and ax, ,ar positive integers

1 If/=/?^ parr, then

D(j,n) min{fe|fe > n, fe squarefree and not divisible by any p 1 (mod px),

2 li) 2pax* parr, then

D(j,n) min {fe | fe > 2 n, fe p or 2p with p =£ 1 (mod px), i 1, r}
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3. If j 2ap\' ...parr with a > 2, then

D(j,n) min {fe|fe >2n,k=por 2p with p =f= 1 (mod/?,), / 1,..., r,
and p _= 3 (mod 4)}.

In [6] a proof is given for 7 3 and/ 6, and all n, using the theory of binary quadratic
forms.
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Un probleme de probabilite maximale

Dans un recent article [1], on trouve le theoreme suivant:

Theoreme: Si Xx,...,Xn sont des variables aleatoires independantes, distribuees selon
des lois geometriques de parametres rx,...9rn9 le maximum de la probabilite
P(XX + X2 H + Xn i) est atteint, pour n et 1 donnes, lorsque rx • • • rn i/(n + i).

Nous donnons ici une demonstration elementaire du theoreme. Soit F l'ensemble des lois
de probabilites sur N avec la convolution /?*q(i) T,P(J)q(i —J)- Soit gr(i) s-rl (avec
5 1 — r) la loi geometrique de parametre r 0 et Gn {gr(X) * 0r(2)* * • * * 9roo) l'ensemble
des convolutions de n lois geometriques.

Lemme 1: Si p e Gn et que Ton definit Ap(i) =p(i)—p(i — 1), il existe i0 i0(p) tel que
Ap(i) 0 pour i < i0 et Ap(i) < 0 pour i i0 (unimodularite).
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