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On the incongruence of consecutive fourth powers

1. Introduction

In [1], Arnold, Benkoski and McCabe solve the following problem: Given an integer
n > 1, what is the smallest positive integer k such that 12,22, ..., n? are all incongruent
modulo k? Let D (n) denote this integer; they show that

1, if n=1,
2, if n=2
DWW =19 i n=a

min {k|k > 2n and k = p or 2 p with p prime}, for all other n.

Their proof, based on Bertrand’s postulate, is neat and elementary. Their problem sug-
gests the following generalization. Given integers n > 1 and j > 1, determine

D(j,n):=min{k > 1]|a’ £ b’ (modk) if 1<a<b<n}.
If j = 2, D(j,n) = D (n). In this article, we determine D (2", n) for all n > 1 and h > 2. The
proofs are elementary, and use an extension of Bertrand’s postulate to primes p = 3

(mod 4).
In the last section we mention what is known about D (j, n) for other values of j.

2. The Theorem
We shall prove the following

Theorem. For h > 2, we have

f

1, if n=1,
2, if n=2,
pn={ o ¥ 21
18, if n=2§,
min {k|k > 2n and k = p or 2p, with p = 3(mod 4)}, for all other n.

Here and in the sequel, p denotes a prime; we will always assume h > 2.

Following the notation in [1], we denote the quantity on the right side of (2.1) by B(2",n).
The proof that D (2%, n) = B(2" n) proceeds by establishing the following five lemmas.
Lemma 1. B(2" n) < 4n forn> 1.

Lemma 2. If p > 2n and p = 3 (mod 4), then D (2",n) < p.
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Lemma 3. If 2p > 2n and p = 3 (mod 4), then D (2",n) < 2p.
Lemmad4. D(2",n) > 2n for n > 3.

Lemmas5. Ifn>5n+ 8 and 2n <m < B(2" n), then D(2*,n) + m.

3. The proofs
We shall use the following observation several times: if h > 2, p = 3 (mod 4) and

a®" = b*" (mod m), (3.1)
with m = p, 2p, p? or 2p?, then

a® ' =b*"" (modm), (3.2
and by induction,

a’? = b? (mod m). (3.3)
Indeed, consider the case m = p:

a®" —b*" =@ - ") (@ + b7,
the second factor on the right side is a sum of two squares and p =3 (mod 4). Hence if
p divides (a®""' + b?"™"), then p|a and p|b [5, Theorem 367].
Similarly, if (3.1) holds (mod 2 p) then so does (3.2) because then a = b (mod 2).

And if (3.1) holds with m = p? or m = 2 p?, then (3.2) does also, since p?| a*"~" if p|a and
h>2.

Proof of Lemma 1. For 1 <n <4 and n = 8, B(2" n) < 4n by inspection. For n > 5,
n + 8, this inequality follows immediately from the existence, for each integer x > 4, of
a prime p = 3 (mod 4) such that x < p < 2x. An elementary proof of this extension of
Bertrand’s postulate (and of similar results for other arithmetical progressions) was given
by Erdos [4], after Breusch [3] had proved it using complex variable techniques.

Proof of Lemma 2. Suppose D(2*,n) > p. Then, for some integers a and b with
1 <a<b < n,(3.1) would hold with m = p. But then, since p = 3 (mod 4), we also would
have (3.3) with m = p. And this is impossible, because 1 <b—a<a+b<2n<p.

Proof of Lemma 3. If D(2" n) > 2p then (3.1) holds, with m = 2p, for some a, b with
1 <a <b <n. But then a? = b?> (mod 2 p), which is impossible since
l1<b—a<a+b<2n<2p.
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Proof of Lemma 4. Clearly, D(2*,n) > 3 if n > 3. Any integer k such that 3 <k <2n
can be written k=a+b, with 1<a<b<n Then a*" =b>" (modk), since
(a + b)|(@*" — b*"); hence D (2", n) * k.

Proof of Lemma 5. By definition of B(4,n), the assumption 2n < m < B(4,n) entails
m =+ pand m £ 2p, if p = 3 (mod 4). We accordingly have 5 possibilities, if n > 2:

) m=rs,r>s=2,r=s(mod?2),

2 m=2rs,r>s=3,r=s=1(mod2),
3y m=por2p p=1(mod4),

4 m=p?

(5) m=2p*

Since (3.2) implies (3.1) for any modulus m and any h > 1, it suffices to show that in
each case there are integers a, b such that 1 <a <b <n and a* = b* (modm) or
a* = b* (mod m).

In cases (1) and (2), take a = 3(r — s), b = 1(r + 5). Then 1 < a < b and a* = b? (mod m).
Also, J(r+s)<irs+1 since r>2 and s>2 (write 2(r —s) < s(r — 2)). Hence
b<irs+1<im+1;since m < B(2"n) <4n, we have b <n.

In case (3), m is a sum of two squares [5, Theorem 366), say m = a*> + b% with1 < a < b.
Further, b> <m < B(2",n) < 4n, whence b<n if n >4. And m = a® + b? implies
a* = b* (mod m).

In case (4), take a=p, b=2p. Then 1 <a<b and a*=b* (modm). Also,
b=2p=2./m<4/n, whence b <nifn=>16.

In case (5), a=p and b=23p satisfy 1<a<b and a®’=5h* (modm) And
b=3./m/2 <./18n, whence b <nif n > 18.

In order to complete the discussion of cases (4) and (5) we observe that 10 < m < 38 if
5 < n < 17, since B(2", n) is non-decreasing (in n) and B(2",17) = 38.If 10 < m < 38 then
m = 25 in case (4), m = 18 in case (5). But D (2", n) & 25 if n > 4 since 3* = 4* (mod 25),
D(2" n) £ 18 if n > 9 since 32 = 9% (mod 18), D(2",n) + 18 if n < 7 by Lemma 3.

Proof of the Theorem. By Lemmas 2 and 3 we have D (2",n) < B(2",n) for n + 1,2,4,8.
By Lemmas 4 and 5, D(2*,n) > B(2",n)for 5 < n < 7and n > 9. This proves the theorem
forn>5n+8. A

Trivially, D(2",1) = 1 and D(2",2) = 2; D(2",3) = 6 by Lemmas 3 and 4. It remains to
determine D (2%,4) and D (2%,8).

By Lemma 4, D (2" 8) > 16; D (2", 8) > 18 since 4*> = 82 (mod 16) and 1* = 4* (mod 17).
In fact, D (2" 8) = 18. Indeed, if (3.1) holds for m = 18, then (3.3) does also, hence a* = b?
(mod 9) and a = b (mod 2). But if a> = b? (mod 9) and 1 <a<b <8 thena+ b =9,
a £ b (mod 2).

For D(2",4), Lemma 4 yields D(2",4) > 8; and D(2",4) + 8 since 2* = 4* (mod 8). An
argument similar to the one used for D (2%, 8) will show that D (2", 4) = 9 (start from (3.1)
with m = 9).
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4. Other results

The following table gives the values of D(j,n) for 2 <j < 30,1 <n < 20.

j\n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 1 2 6 9 10 13 14 17 19 22 22 26 26 29 31 34 34 37 38 41
3 1 2 3 5 5 6 10 10 10 10 11 15 15 15 15 17 17 22 22 22
4 1 2 6 9 11 14 14 18 19 22 22 31 31 31 31 38 38 38 38 43
5 1 2 3 5 5 6 7 10 10 10 13 13 13 14 15 17 17 19 19 21
6 1 2 6 10 10 17 17 17 22 22 22 29 29 29 34 34 34 44 4 44
7 1 2 3 5 5 6 7 10 10 10 11 13 13 14 15 17 17 19 19 24
8 1 2 6 9 11 14 14 18 19 22 22 3t 31 31 31 38 38 38 38 43
9 1 2 3 5 5 6 10 10 10 10 11 15 15 15 15 17 17 22 22 22

10 1 2 6 9 10 13 14 17 19 23 23 26 26 29 34 34 34 37 38 43

11 1 2 3 5 s 6 7 10 10 10 11 13 13 14 15 17 17 19 19 21

12 1 2 6 11 11 22 22 22 22 22 22 46 46 46 46 46 46 46 46 46

13 1 2 3 5 5 6 7 10 10 10 11 13 13 14 15 17 17 19 19 21

14 1 2 6 9 10 13 14 17 19 22 22 26 26 31 31 34 34 37 38 41

15 1 2 3 5 5 6 10 10 10 10 15 15 15 15 15 17 17 23 23 23

16 1 2 6 9 11 14 14 18 19 22 22 31 31 31 31 38 38 38 38 43

17 1 2 3 5 § 6 7 10 10 10 11 13 13 14 15 17 17 19 19 21

18 1 2 6 10 10 17 17 17 22 22 22 29 29 29 34 34 34 41 4 4

19 1 2 3 5 5 6 7 10 10 10 11 13 13 14 15 17 17 19 19 21

20 1 2 6 9 14 14 14 18 19 23 23 38 38 38 38 38 38 38 38 43

21 1 2 3 s 5§ 6 10 10 10 10 11 15 15 15 15 17 17 22 22 22

22 1 2 6 9 10 13 14 17 19 22 22 26 26 29 31 34 34 37 38 41

23 1 2 3 s 5 6 7 10 10 10 11 13 13 14 15 17 17 19 19 2

24 1 2 6 1t 11 22 22 22 22 22 22 46 46 46 46 46 46 46 46 46

25 1 2 3 s 5 6 7 10 10 10 13 13 13 14 15 17 17 19 19 21

26 1 2 6 9 10 13 14 17 19 22 22 26 26 29 31 34 34 37 38 41

27 1 2 3 s 5 6 10 10 10 10 11 15 15 15 115 17 17 22 22 22

28 1 2 6 9 11 14 14 18 19 22 22 31 3t 31 31 38 38 38 38 46

29 1 2 3 s 5 6 7 10 10 10 11 13 13 14 15 17 17 19 19 21

30 1 2 6 10 10 17 17 17 23 23 23 29 29 29 34 34 34 46 46 46

Further computer assisted calculations have shown that D (100,100) = 206,
D (600, 600) = 1223, D (1000, 1000) = 2003 and D (2000, 2000) = 4003.

The following results are proved in [2] for sufficiently large n.

Let py,...,p, be odd primes and a,, ..., a, positive integers.

1. If j = pi*... p¥, then

D(j,n) = min{k|k > n, k squarefree and not divisible by any p =1 (mod p),
i=1,...,r}L

2. Ifj =2p% .. pir, then
D(,n)=min{k|lk=2n k=por2pwithptl(modp),i=1,...,r}.
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3. If j = 2°p%t ... plr with a > 2, then

D(j,n) =min{klk >2n, k=por2pwithp*E1(modp)i=1,...,r,
and p = 3 (mod 4)}.
In [6] a proof is given for j = 3 and j = 6, and all n, using the theory of binary quadratic
forms.
P. Schumer, Department of
Mathematics and Computer Science,
Middlebury College

J. Steinig,
Section de Mathématiques
Université de Genéve
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Un probléme de probabilité maximale

Dans un récent article [1], on trouve le théoréme suivant:

Théoréme: Si X,,..., X, sont des variables aléatoires indépendantes, distribuées selon
des lois géometriques de parameétres r,...,r,, le maximum de la probabilité
P(X,+ X, + .-+ X, =i)est atteint, pour net i donnés, lorsque r, = --- =r, = if(n + i).

Nous donnons ici une démonstration élémentaire du théoréme. Soit F I’ensemble des lois
de probabilités sur N avec la convolution p*q (i) = X p(j) q(i —j). Soit g,(i) = s - r* (avec
s =1 —r)laloi géométrique de paramétrer = Oet G, = {g, 1,*J,(2* " ** *J, w} '€nsemble
des convolutions de n lois géométriques.

Lemme 1: Si p € G, et que 'on définit Ap(i) = p(i) — p(i — 1), il existe iy = iy (p) tel que
Ap(i) = 0 pour i < i, et Ap(i) < 0 pour i = i, (unimodularite).
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