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ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires — Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

El. Math. Vol. 43 Nr. 5 Seiten 129-160 Basel, September 1988

Eine kleine n-Ecks-Lehre

Einleitung

In El. Math. 37 hat M. Jeger eine Reihe von Sitzen iiber Polygone zusammengestellt, von
denen sich jeder im Rahmen der komplexen Zahlenebene elementar beweisen ldsst. Die
betreffenden Sdtze konnen noch in einer anderen Hinsicht unter einem gemeinsamen
Blickwinkel betrachtet werden; sie lassen sich nimlich ohne Ausnahme in der Sprache
der von F. Bachmann begriindeten n-Ecks-Theorie formulieren. Dies hat zur Folge, dass
ihr Beweis nur die Faktorzerlegung von Polynomen und das Losen linearer Gleichungs-
systeme erfordert.

In dem vorliegenden Artikel wird das Ziel verfolgt, den Kern der erwéahnten n-Ecks-
Theorie elementar, aber liickenlos zu entwickeln. Eine anspruchsvollere Darstellung der

Theorie findet der Leser entweder in dem Originalwerk [1] oder, in ausgebauter Form,
in [2].

Fir die Anregung, eine zusammenfassende Arbeit iiber die n-Ecks-Theorie zu schreiben,
mochte der Verfasser Herrn Professor M. Jeger seinen herzlichen Dank aussprechen.
Dazu mochte er hervorheben, dass ihn lange Jahre der Zusammenarbeit an n-Ecks-
Fragen erst mit J. Shilleto und spéter auch mit J. C. Fisher verbanden.

1. Wir denken uns im folgenden ein n-Eck als ein n-Tupel von Vektoren (Ecken) in einem
Vektorraum V (K)[1*]. Im Rahmen unserer Untersuchungen werden wir n-Ecke aus-
schliesslich mit anderen n-Ecken in Beziehung setzen, n also als eine jeweils feste Grosse
betrachten. Unser Interesse wird sich dabei auf diejenigen Figenschaften eines n-Ecks
richten, welche aus den seine Ecken verbindenden zyklisch invarianten Linearbeziehun-
gen hervorgehen. Diese grundlegend wichtigen, ein n-Eck 4 = (a4, 4, ..., a,_ ;) beschrei-
benden Beziehungen werden am besten in rekursiver Form wiedergegeben :

itk =Co8;+C18ivy, + oo + Gy Gigg—15
i=01,....,.n—1,g,,,=g;,, fur i+v=i+v(modn). (1)
Eine rekursive Formel (1) mit k < n — 1 nennen wir eigentlich, die rekursive Formel

a,,=1-a;,+0-a,,,+...+0-g;,,_,, die von jedem beliebigen n-Eck 4 erfillt wird,
trivial. Unter der Rekursionsformel eines n-Ecks verstehen wir seine kiirzeste rekursive



130 El Math., Vol. 43, 1988

Formel (1). Sie ist, wie wir zeigen werden, gewOhnlich eindeutig bestimmt. Die Menge
aller n-Ecke A, welche eine rekursive Formel (1) mit vorgegebenen Koeffizienten
CosCys ..., Cx—y erfiillen, wird eine zyklische Klasse genannt (s. [1], p. 24).

Beispiele 1-3

1. Ein Viereck (ay, gy, a5, a3), welches der Formel g;, ; = a; — g, , + a;,, genugt, ist ein
Parallelogramm. 2. Ein n-Eck (44,44, ..., a,_,), dessen sdmtliche Ecken identisch sind,
wird durch g;, ; = g; beschrieben. 3. Jedes n-Eck (g4, 4,4, -.., a,_ ), insbesondere aber ein
n-Eck, dessen Ecken keine eigentliche lineare Rekursivbeziehung eingehen, erfiillt die
triviale rekursive Formel g;,, =14, +0-g,,;, +... +0-a;,,_,.

Wie ersichtlich tragen wir der zyklischen Natur eines n-Ecks nicht durch seine Definition
sondern dadurch Rechnung, dass wir es mit Hilfe von zyklisch invarianten Beziehungen
unter seinen Ecken beschreiben. Die n-Ecke selbst sind als Vektor-n-Tupel Elemente des
Raumes V"(K) und konnen dort addiert und mit einem Skalar aus K multipliziert
werden:

(go’gly sy gn—l) + (b03b13 oiiv 00 iy bn-—l) - (go + bo’gl + bla ® wis g, gn—l + bn—l),
c(@9s@15.--,8,-1) = (g, ay,...,CaQ,_1). 2
Es ist ein Hauptziel unserer Untersuchungen, ein «kompliziertes» n-Eck, d. h. ein solches

mit einer langen Rekursionsformel, mit Hilfe von (2) als eine Linearkombination einfa-
cherer n-Ecke, d. h. solcher mit kiirzeren Rekursionsformeln darzustellen.

2. Wir konnen die zyklisch invariante Beziehung (1) als ein System von n vektoriellen
Gleichungen auffassen:

& =Cdp TC g +...+C10,

a =cCoQ +cia,+...+¢_1a .
rrm e 152 kot% g, =a, fir v =v(modn). 3)

Gk-1 =CoGn-1 +C180+ ... +C_ 104>

Wie wir sofort erkennen, handelt es sich bei (3) um eine lineare Gleichung unter n-Ecken
des V" (K), und zwar unter solchen, die durch zyklisches Weiterriicken der Ecken ausein-
ander hervorgehen. Wird der Operator des zyklischen Weiterriickens mit x bezeichnet,
d.h. gilt

X (8o, 8455 8y—1) = (81,85, ...,8,_1,80)

xz(QOaQu--'sQn—n)=(Qz,93’-~,90,a1) 4)

-------------------------

und allgemeiner fiir 4 = (a4,81,---,8,-1); €0,C1>--., EK,

(Co+c X+ ...+ x4 =cod +c;(xA4) + ... + ¢, (x* 4), (5)
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so konnen die in (1) bzw. (3) ausgedriickten Beziehungen indexfrei durch
(= X = . —c;x—cp)d=0, 0=(0,0,...,0), (6)

wiedergegeben werden.

Beispiele 4—-6

4. Die in den Beispielen 1-3 betrachteten Polygone entsprechen den nachstehend
beschriebenen: Ein Parallelogramm ist ein Viereck A4,, das die Gleichung
(x> —x* + x —1)A, = 0 erfiilllt. Ein Translations-n-Eck, d.h ein n-Eck der Form
A =(a,a,...,a), geniigt der Bedingung (x — 1) A = 0. Jedes beliebige n-Eck A befriedigt
die Gleichung (x" — 1) 4 = 0. — Es folgen einige weitere n-Ecke in indexfreier Beschrei-
bung. 5. In einem n-Eck 4, das (x*> — 1) 4 = 0 erfiillt, stimmt jede Ecke mit der zyklisch
libernédchsten tliberein. Falls n = 2m gilt, hat A die Form (g, b, a,b, ..., a,b) eines m-fach
durchlaufenen Zweiecks. Ist n + 2m, so hat 4 die Form (g, b, ..., a, b, a), wobei zusitzlich
gilt, dass die zweitletzte Ecke, b, gleich der ersten Ecke, g, ist. Damit wird 4 zum
Translations-n-Eck (g, g, ..., g). In dhnlicher Weise fillt in einem n-Eck, das der Gleichung
(x3 — 1) 4 = 0 geniigt, jede Ecke mit der zyklisch iiber-iibernichsten zusammen. Fir
wiederum ein Translations-n-Eck. 6. Erfiillt das n-Eck 4 die Beziehung (x + 1)A4 = 0, so

hat A die Form (a, — g,a, — a,...). Fir n = 2m ist A ein m-fach durchlaufenes Zweieck
mit Schwerpunkt O, fiir n +2m gilt 4 = 0.

Es erhebt sich die Frage, ob die in (5) definierte Verkniipfung von n-Ecken A4, B, ... aus
V" (K) mit Polynomen p(x), q(x), ... aus dem Bereich K [x] bestimmten Gesetzen ge-
horcht. In der Tat vermdgen wir leicht nachzuweisen, dass die erwidhnten n-Ecke und
Polynome die Beziehungen

(P(x) + q(x) 4 =p(x)4 + q(x) 4, (7a)
p(x)(4 + B)=p(x)4 + p(x)B, (7b)
(P(x)q(x))4 = p(x)(q(x)4) und (7¢)

1-4=4 (7d)

erfullen, d.h. einen Modul mit Multiplikatorenbereich K [x] bilden. Aus (7¢) und der
Kommutativitdt unserer Polynome folgt zudem

p(x)(q(x)A) = q(x)(p(x) 4). (8)

Die Linksmultiplikation von n-Ecken mit x oder mit einem Polynom in x kommt einer
Abbildung des Vektorraums der n-Ecke in sich gleich. Die Abbildung ist linear, wie aus
(7b) und (7 c) leicht folgt. Wir werden fiir sie den Bachmannschen Ausdruck einer zykli-
schen Abbildung brauchen.
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3. Ein Polynom, welches, wie dasjenige in der obigen Formel (6), ein n-Eck A4 auf das
Null-n-Eck 0 = (0,0, ..., 0) abbildet, wird ein Annullator von A genannt. Es zeigt sich,
dass man die Eigenschaften eines Polygons am besten mit Hilfe seiner Annullatoren
herleiten kann. Dabei liefern zwei Annullatoren, die sich lediglich um einen konstanten,
nicht verschwindenden Faktor unterscheiden, dieselbe Information. Gewisse Polynome,
wie das (gradlose) Korperelement 0 oder wie x" — 1, annullieren sdmtliche n-Ecke; beson-
dere Aussagen iiber ein einzelnes n-Eck sind aus ihnen natiirlich nicht herleitbar.

Es sei nun 4 ein n-Eck, p(x) ein Annullatorpolynom von 4 und m(x) ein Annullatorpoly-
nom niedrigsten Grades von 4. Dann ist p(x) durch m(x) ohne Rest teilbar. Ware das
Gegenteil der Fall, dann handelte es sich bei dem Restpolynom r(x) = p(x) — f (x)m(x)
entgegen unseren Annahmen um einen Annullator von 4 mit einem niedrigeren Grad als
dem von m(x). Mit Hilfe des eben Bewiesenen folgt sofort, dass das n-Eck 4 von den und
nur den Polynomen p(x) annulliert wird, welche m(x) als einen Faktor enthalten. Divi-
dieren wir das Polynom m(x) durch seinen Anfangskoeffizienten c, so erhalten wir ein
normiertes Polynom m , (x), das gleichermassen Teiler aller und nur der Annullatoren von
A ist. Wir nennen m(x) das zu A gehirige Polynom oder den minimalen Annullator von
A [2%].

Soviel zur Menge der Annullatoren eines gegebenen n-Ecks A. Wir betrachten nun
umgekehrt die Menge der von einem festen Polynom p(x) annullierten n-Ecke, seinen
Kern. Diese letztere, bereits frither erwdhnte Menge, die zyklische Klasse von p(x), ist
sowohl additiv als auch in bezug auf Multiplikation mit einem Skalar abgeschlossen und
bildet daher einen Unterraum von V"(K). Aus der Kommutativitit der zyklischen Abbil-
dungen ergibt sich leicht, dass jede zyklische Abbildung ¢ (x) die zyklische Klasse von p (x)
in sich abbildet. Ist nimlich 4 ein beliebiges n-Eck der erwdhnten Klasse, d. h. ein n-Eck,
das der Gleichung p(x) 4 = 0 geniigt, dann erfiillt A auch t(x)p(x)4 = 0 und damit
p(x)t(x)A = 0. Es folgt also, dass mit A auch t(x)A4 zur zyklischen Klasse von p(x)
gehort.

Wir kommen nun zu zwei Sdtzen aus der Modultheorie, welche fiir unsere Untersuchun-
gen grundlegend sind. Thr Beweis stiitzt sich auf den folgenden bekannten Satz: Sind p (x),
q(x) zwei Polynome mit dem grossten gemeinsamen Teiler g(x), so kann man stets
Polynome p, (x), q, (x) finden, welche g (x) = p, (x) p(x) + ¢, (x) q(x) erfilllen [3*]. In der
Folge gilt mit p(x) A = q(x) A = 0 stets auch GGT (p(x),q(x))4 = 0.

Zerlegungssatz. Zu einem n-Eck, das durch das Produkt der teilerfremden Polynome
p(x), g (x) annulliert wird, existieren eindeutig bestimmte n-Ecke B, C, welche die Summe
A haben und durch p(x) bzw. g (x) annulliert werden: Ist

p(x)q(x)4 =0, GGT(p(x),q(x) =1, ©)
so existiert genau ein Paar von n-Ecken B, C, so dass

A=B+C, p(x)B=q(x)C=0 (10)
gilt.

Beweis. Erfiillen p, (x), q,(x) die Bezichung 1 = p, (x) p(x) + g, (x) g (x), dann geniigen
B=q,(x)q(x)4 und C =p,(x)p(x)A den Gleichungen (10). Die Bedingung (10) be-
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stimmt B, C eindeutig. Geniigen auch B’, C’ derselben, so konnen wir B' =B, C' = C
beweisen, indem wir aus B —B=C —-C" und p(x)(B—B)=¢q(x)(C—-C)=0
zundchst q(x)(B' — B) =p(x)(C — C')=0 und daraus GGT (p(x),q(x))(B' — B) =
1-(B'— B)=GGT (p(x),q(x))(C —C)=1-(C — C’) =0 herleiten. [

Urbildsatz. Wird das n-Eck B durch das Polynom p(x) annulliert und ist g(x) zu p(x)
teilerfremd, so existieren n-Ecke A, die durch g(x) auf B abgebildet werden: Ist

p(x)B =0, GGT(p(x),q(x) =1, (11)
so existieren n-Ecke A, so dass

q(x)4A =B (12)
gilt.

Beweis. Erfiillen p,(x),q,(x) die Beziehung 1 = p,(x)p(x) + q,(x)q(x), dann gilt
B=p (x)px)B+q,(x)qg(x)B=0+q,(x)q(x) B =q(x)q,(x) B.Dasn-Eck 4 = q, (x) B
wird also durch g(x) auf B abgebildet. [

Der Zerlegungssatz kann dahin erginzt werden, dass mit p(x)-B = 0 und q(x)C =0
auch p(x)q(x)- (B + C) = 0 gilt. Zum Beweis des Urbildsatzes ist zu bemerken, dass das
konstruierte Urbild 4 von B gleich B durch p(x) annulliert wird. Mit dieser Sonder-
eigenschaft steht A = g, (x) B unter den Urbildern von B allein da, weil sich aus
gqx)A'=q(x)A=B und p(x)4'=p(x)4 =0 sofort GGT (p(x),q(x)(4" — A) =
1-(A' — A) = 0 und damit A’ = 4 ergibt.

Unsere beiden Sitze samt Ergdnzungen konnen fiir zyklische Klassen formuliert werden.
Sind p (x), q (x) teilerfremde Polynome, so ist die zyklische Klasse von p (x) q (x) die direkte
Summe derjenigen von p(x) und derjenigen von q (x) (Zerlegungssatz); das Polynom ¢q(x)
bildet die zyklische Klasse von p(x) g (x) auf die (in ihr enthaltene) Klasse von p(x) ab und
wirkt dabei als Permutation der letzteren Klasse (Urbildsatz).

Beispiel 7 (Zerlegungs- und Urbildsatz)

Wir bezeichnen ein Sechseck 4 = (g,,4,, ..., as) als Prisma, wenn seine grossen Diagona-

len (g, a5, 4, as,a, a,) parallelgleich sind, d. h. wenn sie die Seitenkanten eines dreiseitigen

Prismas darstellen (Fig. 1). Die Ecken eines solchen Prismas bestimmen sich rekursiv aus

der Formel g;,, — g;,;, = —(@;+3 — @), i =0,1,..., 5, und geniigen damit
(x*+x—x—-1)4=0.

Aus der Faktorzerlegung

AP —x—1)=*—-1)x+1), GGT(x*—1,x+1)=1,
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ergibt sich mit Hilfe des Zerlegungssatzes die Existenz und Eindeutigkeit von Sechsecken
B, C, die

A=B+C, xX*-1)B=(x+1)C=0

erfiillen. Unser Prisma ist also die Summe eines zweifach durchlaufenen Dreiecks und
eines dreifach durchlaufenen Zweiecks mit Schwerpunkt O (s. Beispiele 5, 6). Aus
x> —1=(x? = x + 1)(x + 1) — 2 (Eukl. Algorithmus) folgt

(—H =D +Gx7 —dx + Plx+ 1) =1
und daher nach dem Beweis des Zerlegungssatzes
B=Gx*—3ix+3)(x+14, C=(- x> —1)4.

In unserer Figur ist das gegebene (zweidimensionale) Prisma A = ((— 2, — 2), (1,95),
0, — 2),(0,4), (— 1, — 1), (2,4)) und damit B = ((— 1,1), (0,2), (1,1), (— 1,1), (0,2), (1, 1)),
C=((—-1,-3,1,3),(—1,-3),(1,3),(— 1, — 3),(1, 3)). Nach dem Beweis des Urbildsat-
zes hat B das Urbild 4, = (G x* —3x + 1) B beziiglich x + 1, wobei 4, gleich B ein
zweifach durchlaufenes Dreieck ist. Fiir B wie oben ist A, = ((0, 0), (— 1,1), (1,1), (0,0),
(—1,1),(1,1)).
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4. Jedes n-Eck A geniigt der Formel (x" — 1) A = 0. Das bedeutet geméss den Betrach-
tungen in Abschnitt 3, dass x" — 1 durch das zu 4 gehorige Annullatorpolynom ohne
Rest teilbar ist. Ein Polynom m(x) besitzt also keineswegs eine beliebige Primteiler-
zerlegung, sondern vielmehr eine solche, deren Faktoren derjenigen von x" — 1,
X" —1=p,(x)p,(x)...p(x), entnommen sind. Welche Polynome Primfaktoren p;(x)
von x" — 1 sind, hidngt vom gegebenen Koeffizientenkorper K ab. Wir behaupten, dass
wenn die Charakteristik von K kein Teiler von n ist, x” — 1 in paarweise verschiedene
Primfaktoren zerfillt [4*].

Zum Beweis gehen wir von einem Korper K aus, in dessen Polynombereich das Polynom
x" — 1 den Faktor (p(x))* besitzt, wo p(x) prim und s = 2 ist. Die Ableitung nx"~! von
x" — 1ist dann durch (p (x))* " ! teilbar und damit durch p(x). Das Polynom p(x) ist dabei
aber nicht gleich x, weil x kein Teiler von x" — 1 ist, was bedeutet, dass nx" !, um durch
p (x) dividierbar zu sein, identisch verschwinden muss. Nun ist x" !, n-mal zu sich selbst
addiert, nur dann fiir alle x gleich 0, wenn der unseren Betrachtungen zugrunde liegende
Korper K eine Charakteristik aufweist, die gleich n oder gleich einem echten Teiler von
n ist. Unter den Bedingungen der Behauptung existiert der Teiler (p (x))° von x" — 1 also
nicht. [J

Wir wollen im folgenden voraussetzen, dass das beziiglich unserer n-Ecke definierte
Multiplikatorpolynom x" — 1 iiber dem gegebenen Koeffizientenkorper K in lauter ver-
schiedene Primfaktoren zerfillt. Auf Grund des vorangegangenen entspricht diese Vor-
aussetzung der von nun an als erfiillt angesehenen Bedingung, dass der unserem Vektorraum
V (K) zugrunde liegende Korper K eine Charakteristik besitzt, die kein Teiler von n ist [5*].
Wir beschlieBen diesen Abschnitt mit zwei unmittelbaren und wichtigen Konsequenzen
des fritheren Zerlegungssatzes, die nur unter den eben gemachten Bedingungen giiltig
sind.

Zerlegungssatz (zweite Version) [6*]. Ein n-Eck + 0 kann in genau einer Weise als Summe
von nichtverschwindenden n-Ecken dargestellt werden, welche Primfaktoren des Poly-
noms x" — 1 als Annullatoren haben. Die betreffenden Primfaktoren sind die minimalen
Annullatoren der ihnen zugeordneten Summanden-n-Ecke und ihr Produkt ist gleich
dem minimalen Annullator m,(x) von A.

Bemerkung. Wir betrachten hier nur solche Zerlegungen von A4, in denen Glieder, die von
denselben Polynomen annulliert werden, schon addiert sind.

Beweis. Es ist klar, dass das Null-n-Eck 0 die Konstante 1 als minimalen Annullator
besitzt und jedes andere n-Eck ein nichtkonstantes Polynom. Wird das n-Eck 4 % 0 von
einem (normierten) Primpolynom annulliert, so handelt es sich bei diesem automatisch
um den minimalen Annullator.

Gemass dem fritheren Zerlegungssatz gibt es genau eine Zerlegung von 4, A=B,+ ...+ B,,
deren Glieder der Reihe nach von den Primfaktoren p, (x), ..., p,(x) des zu A gehorigen
Polynoms m , (x) annulliert werden. Es kann dabei keines der n-Ecke B, gleich 0 sein, weil
sonstA=B,+...+B,_, + B;,,, + ...+ B, und in der Folge (m, (x)/p;(x)) 4 = 0 wiire,
entgegen der Definition von m(x). Also ist fiir alle i p;(x) der minimale Annullator von
B; und die angegebene Zerlegung von 4 eine Summendarstellung im Sinne der Behaup-
tung.
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Liegt irgendeine andere Zerlegung von A4 vor, deren Glieder durch Primpolynome annul-
liert werden, so wird 4 wiederum vom Produkt derselben annulliert. Dieses Produkt ist
damit durch m (x) teilbar und zahlt in der Folge p, (x), ..., p,(x) (nebst anderen Primpo-
lynomen) unter seinen Faktoren. Wir behaupten, dass unsere neue Zerlegung von der
FormA =B, + ...+ B, + 0 + ... + 0ist. Zum Beweis stellen wir zuerst fest, dass wir die
gegebenen Primfaktoren den angefiihrten Summanden in eineindeutiger Weise als An-
nullatoren zuordnen kénnen. Nun bestimmen aber diese Faktoren (nach dem ersten
Zerlegungssatz) die ihnen zugeordneten Summanden eindeutig. Das bedeutet, dass die
vorliegende Zerlegung von A die angegebene Form hat. Weil in ihr aber 0-Terme auftre-
ten, ist sie keine Zerlegung im Sinne der Behauptung. Die einzige solche ist also die im
vorigen Abschnitt beschriebene. [

Translationssatz. Das n-Eck A hat genau dann den Schwerpunkt 0, wenn das zu ihm
gehorige Annullatorpolynom m,(x) nicht durch x — 1 teilbar ist. Gilt m,(x) =
(x — 1)mY(x), so existieren eindeutig bestimmte Polygone T,, A°, welche

A=T, + A% (x—1D)T,=m5(x)4° =0,

erfiillen, wo T, = (t,¢, ..., t) ein Translations-n-Eck # 0 und A4° ein n-Eck mit Schwer-
punkt O darstellt.

Beweis. Beachten wir den Zerlegungssatz, so miissen wir lediglich beweisen, dass
wenn m,(x) den Faktor x — 1 nicht enthélt, A den Schwerpunkt 0 hat. Ist x — 1
kein Faktor von m,(x), dann ist das Polynom x" !4+ x""2+4...+1 wegen
xX"—1=x—-1D)x""14+x"2+...+1) durch m,(x) teilbar. Es gilt dann also
(x" '+ x""2 4 ...+ 1)4 = 0. Hat 4 den Schwerpunkt s, dann hat das Polygon auf der
linken Seite der letzten Gleichung den Schwerpunkt ns. Das Polygon auf der rechten
Seite hat den Schwerpunkt 0; es gilt also ns = 0 und damit s =0. [

5. Wie wir im vorigen Abschnitt gesehen haben, baut sich jedes n-Eck aus einfachsten
n-Ecken auf, welche schon von Primpolynomen annulliert werden. Dabei miissen diese
primen Polynome Teiler von x" — 1 sein, was heisst, dass es gerade soviele Arten von
Bausteinen gibt, wie Primfaktoren von x" — 1 [7*]. Wir werden im folgenden, von der
Primteilerzerlegung von x” — 1 im komplexen, reellen und rationalen Fall ausgehend die
jeweils einfachsten n-Ecke charakterisieren.

Die Losungen der Gleichung x" = 1, die nten Einheitswurzeln, sind im Rahmen des
komplexen Zahlsystems mit wgy,w,,...,w,_, identisch, wo w, = e”zm = Cos (52 n)
+ isin (——Zn ist fir k=0,1,...,n— 1. Die Ein}cleitswurzel w, wird primitiv genannt,

n vk, .
falls die minimale positive Grosse v, fiir die wy = e” - = 1 gilt, gleich n ist. Offensichtlich
ist w, genau dann primitiv, wenn k und n teilerfremd sind. Fiir alle n ist wy = 1.
Wir entnehmen dem vorangehenden Absatz, dass das Polynom x” — 1 die Primteiler-
zerlegung x" — 1 = (x — wp)(x — w,)...(x — w,_,) aufweist. Ein n-Eck, das vom Fak-
tor x —w, dieser Zerlegung annulliert wird, ist augenscheinlich von der Form
(@, wya,...,wi 1a), d h. es liegt auf einer Geraden durch Q des Vektorraums ¥V (C).
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Wir beschrinken uns in den folgenden Untersuchungen auf den besonders interessanten
Fall, dass der gegebene Vektorraum ¥V (C) eindimensional und somit mit einer einzigen
komplexen Geraden identisch ist. Seine Punkte konnen demgemass als komplexe Skalare
angesehen werden und damit als Elemente der Gaussschen Zahlenebene. Ein betrachtetes
n-Eck im besonderen wird zum n-Tupel komplexer Zahlen und so zu einer n-punktigen
Figur in dieser Ebene [8*].

Die fiir uns speziell wichtigen n-Ecke (a,w, q, ..., w; "1 a), a + 0, mit der (v + 1)ten Ecke

vk
—2i
w,a=-e" a gehen aus a durch hintereinander erfolgende Rotationen mit Zentrum 0

und Drehwinkel — 2 n hervor.

n
Gilt GGT (k,n) = 1, d. h. ist w, eine primitive n-te Einheitswurzel, so sind alle Ecken von
A = (a,w,a,...,w! ' a) voneinander verschieden und A ist ein regulires n-Eck mit

Schwerpunkt 0. Fiir k1 ist A ein konvexes, positiv umlaufenes Polygon; fir k = n — 1

1
2w mit 27w — 2n = — -2« identifizieren, wo-

n n n
durch A als ein konvexes, negativ umlaufenes n-Eck erscheint; in allen anderen Fillen ist
A ein Stern-n-Eck.

Ist GGT (k,n) = u,,u, > 1, und setzen wir k = k' u,, n = n, u,, so ist der w, zugeordnete

konnen wir den Drehwinkel

’

k k
Rotationswinkel —2 © gleich — 2 n. Daraus und aus GGT (k', n,) = 1 folgt, dass es sich bei
n n,

(a,wya, ..., wi~ ! a)um ein u,-fach durchlaufenes regulires n,-Eck mit Zentrum 0 handelt.
Ist k =0, w, = wy =1, so stimmt 4 = (a,wga, ..., ws ! a) mit dem Translations-n-Eck
(a,a, ..., a) uberein.

Die Bausteine aller komplexen n-Ecke sind also neben den Translations-n-Ecken die
reguldren n-Ecke mit Zentrum 0 und die u,-fach durchlaufenen reguliren (n/u,)-Ecke mit
Zentrum 0. Ein n-Eck der Form (a, w, a, ..., w} ' a), k + 0, wird im folgenden k-reguldr
genannt.

Beispiele 8, 9

Es handelt sich bei ihnen um zwei Sitze aus der in der Einleitung zitierten Arbeit von M.
Jeger (Primérquellen daselbst), fiir die wir einen Beweis im Sinne unserer Theorie geben.

8. (Propellersatz). Sind (0,a,a’), (0,b,b") und (0,c,c’) drei o0.B.d.A. positiv umlaufene,
gleichseitige Dreiecke, welche ihre erste Ecke im Ursprung haben, so ist das aus den
Mittelpunkten der Strecken a’b, b’ c und ¢’ a gebildete Dreieck M = (a”, b”, ¢”) ebenfalls
positiv umlaufen und gleichseitig (Fig. 2).

Beweis. Aus unseren Annahmen folgt, dass das Dreieck D = (a,b,c) durch eine
60°-Drehung um den Ursprung in D’ = (a’,b’,c) ibergefilhrt wird, d.h., dass
D’ = wg , D = /92" D gilt. Diese Gleichung kénnen wir unseren Zwecken besser an-
passen, wenn wir den zu reguldren Sechsecken gehorigen Faktor wg ; = cos(m/3)
+ isin(n/3)durch — w, = — €*32* = — cos(4 n/3) — isin (4 n/3) ersetzen und so mit w,
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eine regulidren Dreiecken zugeordnete Zahl ins Spiel bringen. Beachten wir noch
xD = (b, c,a), so haben wir

und in der Folge
x—Dx—w)IM=3(x—1Dx—w)(x—w)D=1(x>*-1)D=0.

Aus der letzten Gleichung schliessen wir, dass M = T,, + M° ist, wo T,, ein Translations-
n-Eck und M?° ein positiv umlaufenes, regulires (gleichseitiges) Dreieck mit Zentrum 0
darstellt. [

9. Werden tiber den Seiten eines Vierecks Quadrate errichtet, und zwar entweder alle nach
aussen oder alle nach innen, dann definieren die erhaltenen Quadratmittelpunkte ein
Viereck, dessen Diagonalen gleichlang sind und aufeinander senkrecht stehen.

Beweis. Das gegebene Viereck sei als Quadrupel 4 = (aq,a,, a,,a;) so durchlaufen, dass
die konstruierten Quadrate in bezug auf es rechts liegen. Bilden die Mittelpunkte dieser
Quadrate das Viereck B = (b,,b,,b,,b;), so werden die Verbindungsvektoren entspre-
chender Ecken von 4 und B durch eine Drehstreckung der Seitenvektoren von A erhal-
ten. Aus dem Seitenvektorenviereck (x — 1) 4 erhalten wir das Viereck der Verbindungs-
vektoren B — A, indem wir jeden Vektor auf ﬁ/Z seiner Linge verkiirzen und um — 45°
drehen (s. Fig. 3). Es gilt also B — A = (cos(— n/4) + isin(— n/4)) (\/5/2) (x — 1) A, oder
kiirzer

B=1[1—i)x+(1+i4.
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Das Viereck der Diagonalvektoren von B, D = (x> — 1) B, geniigt in der Folge der Glei-
chung

D=1[1—)x*+(1 +i)x*—(1 —i)x —(1 + i) 4.

Multiplizieren wir D mit x — w, = x — e//27! = x — i 50 erhalten wir unter Beachtung
von (x* —1)4 =0

x—w)D=(x—-)D=1[1—-i)x*—(1—i)]d=0.

Damit ist gezeigt, dass es sich bei D um ein positiv umlaufenes, konvexes, regulires
Viereck mit Schwerpunkt 0 handelt. Das Diagonalenviereck D von B ist also ein Quadrat
mit Zentrum 0, was beweist, dass zwei benachbarte Diagonalenvektoren von B gleichlang
sind und aufeinander senkrecht stehen. [

Bemerkung. Die Zerlegungstheorie komplexer n-Ecke kann auch von einem ganz anderen
Ansatz her angegangen werden. Um diese zweite Interpretation zu erldutern, wihlen wir
ein beliebiges n-Eck 4 = (ay,4a,, ..., a,_;) und denken uns dasselbe vollstdndig in seine
reguldren und Translationskomponenten zerlegt:

A= (Xg,Xg,---sXo) F+ (X1, W Xpsee s WX )+ i+ (X oWy X ga WX, ),

K
=2n
w,=¢" fuir k=0,1,...,n—1. (13)

Nicht auftretende Komponenten seien dabei als 0-n-Ecke eingefiigt. Eine leichte Modifi-
kation von (13) ergibt

A=xo(L,1, ..., D +x;,L,w, ..., Wi D+ +x,_  (Lw,_q,...,WiZ] (14)

und wird bei Benutzung der Abkiirzungen R, =(1,1,..., 1), R, =(1,w,,..., W} Y,...,R,_;
=1,w,_y,..., W'D zu

A=xOR0+le1+...+xn_1Rn_1. (15)

Offensichtlich bilden die Polygone R,,R,, ..., R,_, eine Basis des Vektorraums aller
komplexen n-Ecke. Aus den Gleichungen (13) berechnet sich die Koordinate x, von 4 als

X, =—(ap WY +a, Wi +...+a,_ WY, k=01,...,n—1,
n

kn_ .
—n2m

we=e " . (16)

Sie ist der kte endliche Fourier-Koeffizient von A und die Gleichungen (14), (15) sind die
endlichen Fourier-Reihen-Darstellungen von A (s. [5]).
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Wir gehen nun zur Charakterisierung der einfachsten Polygone der reellen Ebene iiber
und studieren zu diesem Zweck die Zerlegung von x" — 1 in Primfaktoren mit reellen
Koeffizienten. Das reelle Zahlsystem ist im komplexen enthalten und so ist jedes reelle
Polynom automatisch auch ein komplexes Polynom. Ein reelles Polynom braucht aber
nicht unzerlegbar zu sein im komplexen Bereich.

Zunichst hat x” — 1 den reellen linearen Primteiler x — wo = x — 1, der zu den
Translations-n-Ecken (a, g, ..., g), a + 0, gehort. Dazu kommt, falls n eine gerade Zahl ist,
der Primteiler x — w,;, = x + 1, welcher die n-Ecke der Form (g, — a,9, —q, ..., 4, — )
annulliert (s. das frithere Beispiel 6).

Alle anderen Primfaktoren haben, wie wir gleich zeigen werden, die Form

k n
(x—wk)(x—wn~k)=x2_2cos(;2n)x+1, k=k0,5. (A7),

Aus der trigonometrischen Darstellung von w,,w, _, folgt, dass die Gleichung von (17)
n
stimmt und dass w,,w,_, firk + 0,5 nichtreelle Grossen sind. Auf der rechten Seite von

(17) steht also ein reelles Primpolynom.

Zu den Polygonen, die vom Polynom in (17), annulliert werden, gehdren zunéchst einmal
die euklidisch k-reguldren n-Ecke [9*]. Sind ndmlich g;, ;. ,,4;, , drei zyklisch aufeinan-
derfolgende Ecken des k-reguldren n-Ecks A = (aq,4;, ..., a,-,) und ist m; der Mittel-
punkt von g;.q;,,, so gilt wegen [0,4;| =10,q;,,| die Beziechung m;, =1-(a; + a;,,)

k
= COS <~2 n) -@; ;¢ (s. Fig. 4(a)). Und diese entspricht, fiir alle i beachtet, der Gleichung
n

k
(xz - 2cos(—~2n) x + I)A = 0.
n
Wird eine lineare Transformation auf das n-Eck 4 angewandt, so entsteht aus demselben

ein n-Eck A’ = (ay, 4}, ..., 4d,_,), dessen Ecken durch die gleichen linearen Beziehungen

k
verbunden sind. Es gilt also fiir alle i %(gg + g;,,) = cos (—2 n) a;,, und A’ erfiillt
k
(x" — 2cos (~21r) x + 1) A’ = 0 (Fig. 4(b)).

n

h

a4

Figur 4(a) Figur 4(b)
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Sind a,, a, zwei linear unabhingige Vektoren und gy, a’; zwei beliebige weitere Vektoren,
so gibt es genau eine lineare Transformation, die g, in @ und g, in g tberfiihrt. (Sie bildet
X = Xgdo + x; @, auf X’ = x4, + x, g} ab.) Wir konnen also ein und nur ein n-Eck A’
finden, dessen erste zwei Ecken g,’, g vorgegeben sind und das Glied um Glied aus A
durch eine lineare Transformation hervorgeht. Nun ist A" aber iberhaupt das einzige

k
n-Eck, das die Anfangsecken gy, d’; und den Annullator x? — 2 cos (—2 n | x + 1 besitzt,
n

da diese Vorgaben die spiteren Ecken induktiv bestimmen. Die von x? — cos (— 2 n) x+1

n
annullierten n-Ecke sind also entweder k-reguldr oder sie gehen aus einem k-reguldren
n-Eck durch eine lineare Transformation hervor. Wir nennen die betreffenden n-Ecke, die
wesentlichen Bausteine allgemeinerer n-Ecke, k-affin-reguldr [10*]. Der Begriff schliesst
eindimensionale Polygone mit ein.

Bemerkung. Es gibt auch in der Gaussschen Zahlenebene k-affin-regulire n-Ecke. Sie
haben denselben Annullator und dieselbe Gestalt wie diejenigen in der reellen Ebene. Was
sie aber von letzteren unterscheidet, ist, dass sie weiter zerlegt werden kénnen, und zwar,
wie aus (17) hervorgeht, in ein k-reguldres und ein (n — k)-reguldres n-Eck.

Wir fiigen hier noch an, dass der bekannte Satz von Napoleon-Barlotti (s. [2], [4]), der
affin-regulare und regulidre n-Ecke verbindet, in der Gaussschen Ebene bewiesen werden
muss, weil die reguldren n-Ecke in der reellen Ebene keine durch ein Polynom definierte
zyklische Klasse darstellen.

Beispiel 10

Aus der Faktorzerlegung x* — 1 = (x — 1) (x + 1)(x? + 1) folgt, dass jedes Viereck 4 die
Darstellung 4 = (b,b,b,b) + (¢, — ¢,¢, — ¢) + (d,e, — d, — ¢) besitzt. Wegen x> +1 =
(x — (x4 i) =(x — w))(x — wy) =x*> —2cos(:2m)x + 1 gilt, dass der letzte Sum-
mand, ein Parallelogramm mit Schwerpunkt 0, im Reellen unzerlegbar ist und durch eine
lineare Transformation aus einem Quadrat (g;,4;,,) = cos~ ! cos(: 2 n) = % hervorgeht.

Als letztes beschreiben wir die einfachsten Bausteine von n-Ecken in der rationalen
Ebene. Fiir die dazu nétige Bestimmung der Primfaktoren von x" — 1 gehen wir wie im
reellen Fall davon aus, dass die rationalen Primfaktoren gleich komplexen Primfaktoren
oder gleich Produkten komplexer Primfaktoren sind.

Den diesbeziiglichen Betrachtungen sei vorausgeschickt, dass wo wir von Teilern von
x" — 1 sprechen, wir den komplexen Polynombereich anvisieren. Auch werden wir ohne
besondere Erwiahnung von der Aquivalenz der Aussagen «k ist ein Teiler von I» und
«x* — 1 ist ein Teiler von x' — 1» Gebrauch machen. Die Abkiirzungen fiir «ist Teiler
von» und «ist ein echter Teiler von» sind |, ||.

Wir beginnen mit zwei Definitionen. Die Menge C(t), wo t|n gilt, umfasse diejenigen
Primfaktoren von x" — 1, die auch Teiler von x* — 1 sind, nicht aber Teiler von x* — 1 fiir
T<t:

Ci)={x —wex —wx"—1L,yx*—1, fir 7<t},(t|n). (18)
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Offenbar umfasst C (t) genau diejenigen linearen Polynome x — w,, deren Konstante eine
primitive t-te Einheitswurzel ist. Man beachte, dass das System der Mengen C (t) eine
Klasseneinteilung der Menge aller Primteiler von x" — 1 darstellt. — Die Menge D (t), wo
t| n gilt, umfasse die simtlichen Primfaktoren von x* — 1:

D(t) = {x — w:x — w,]x' — 1}, (t|n). (19)

Zusammengenommen enthalten die Mengen D (¢) alle Primteiler von x" — 1, wobei sie
sich aber gegenseitig tiberlappen. Fiir das folgende ist wichtig, dass D (t) die Vereinigungs-
menge der Klassen C(t), die t|t erfiillen, darstellt. Es gilt also

Dit)={JCr) (20)

|t

und in der Folge

C®=D\|J C(). (21)

ti|t

Aus (20) folgt unschwer { ) C(r) = {  D(x), was mit (21) kombiniert

et et

CH) =D\ D) (22)

]|t

ergibt. — Wir werden die Formeln (21), (22) im Zusammenhang mit gewissen Polynomen
brauchen, die den Klassen C(t) zugeordnet sind. Unter dem Kreisteilungspolynom F,(x)
verstehen wir das Produkt der Polynome x — w, aus C(t).

Wir wollen im folgenden zeigen, dass die Kreisteilungspolynome F,(x),t|n, rationale
Koeffizienten haben. Dazu bemerken wir zuerst, dass das Produkt der komplexen
Primpolynome aus | ) C(7) gleich [F,(x) ist. Das mit ihm identische Produkt der

et et

Primpolynome aus ()D(r) (die Mengen D(r) uberlappen) ist gleich dem

||t

KGV {x* — 1:t|/t}. Daraus resultiert nach (21), (22)

=1 x'—1
[TF.(x) KGV {x* —1:t|t}

t)jt

Fi(x) = (t|n). (23)

Da Zihler und Nenner des zweiten Bruches rationale Koeffizienten haben, trifft das auch
fiir den Quotienten F,(x) zu. Man kann sogar zeigen, dass alle Kreisteilungspolynome
ganzzahlige Koeffizienten haben und - fiir uns wichtiger — dass sie im rationalen Bereich
prim sind [11*].
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Beispiel 11. (Bestimmung der in x*° — 1 enthaltenen Kreisteilungspolynome)
Diese ergeben sich gemdss Formel (23) aus F, (x).

Fi(x) =x—-wyg=x—-1

x*—1 x*—1

B = R0 =D+ D)

=x2+1

F — _ 4 3 2 1
5 (x) F.() ~— 1 X'+ xT+x+x+
x1% —1 x1% .. 1 x5 +1
Fio(x) = 3 5 = 5 =
KGV{x—1,x*—-1,x>—-1} (x+1)x>-1) x+1
=x*—x34+x*—x+1
x20__1 x20_1
Fio(x) =

KGV {x — 1,x2 — 1,x* — 1,x° — 1,x1° — 1} (x2 + 1)(x'° — 1)

=711 =x% —x% + x* —x? 4+ 1.

Wir nennen die von den Kreisteilungspolynomen F,(x), t|n, annullierten Polygone, die
Bausteine rationaler Polygone, rational-reguldr (in [1] Q-reguldr). Ist F,(x) der minimale
Annullator des n-Ecks B = (by, b,, ..., b,_ ), so gilt wegen F,(x)|x' — 1, dass B ein (n/t)-
fach durchlaufenes t-Eck darstelit. Ist t > 1 und 7 irgendein echter Teiler von ¢, so sind
nach (23) x* — 1 und F,(x) teilerfremd. Nach dem Urbildsatz gibt es dann ein n-Eck
A =(ag,ay,...,4,_,), das (x* — 1) 4 = B genligt. Die angegebene Beziehung zwischen
A und B enthélt insbesondere die Gleichungen a,,., = a, + by, 85,44 = dovi + bois
=@ +b+bip sty =a +b+ b +...+ b, und, da sich die Ecken von
B nach t Schritten wiederholen, a,,;, = g, + (n/t)(b, + b, .y + ... + by_y+i) Wegen
dn+x = G ist die Eckensumme des t-fach iiberspringenden (¢/7)-Ecks (by, b, 445 -5 b=y +4)
gleich 0. (Diese Aussage gilt fiir jedes 7,7 t, und jedes (0.B.d.A. < 7 gehaltene) k.) Geo-
metrisch gesprochen zeichnet sich ein rational-regulires, (n/t)-fach durchlaufenes ¢t-Eck
also dadurch aus, dass seine zu jedem echten Teiler 7 von t existierenden 7-fach tibersprin-
genden Teil-(t/7)-Ecke denselben Schwerpunkt haben wie das 7-Eck selbst [12*].

Schlussbemerkung

Die n-Ecks-Theorie kann in mannigfacher Weise entwickelt und angewandt werden.

Als n-Ecke konnen nicht nur n-Tupel von Vektoren angesehen werden, sondern auch
unendliche Folgen von Vektoren, ja sogar die Punkte von Ovalen mit den Neigungswin-
keln ihrer Tangentenvektoren als Indizes. Vor allem aber kann der Raum V"(K), in dem
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ein n-Eck gesamthaft als ein Vektor auftritt, metrisiert werden. (Man beachte dazu den
Titel «Perpendicular Polygons» von [2]) Es ist moglich, das innere Produkt zweier
n-Ecke so zu definieren, dass das Normquadrat eines n-Ecks mit seiner Fliche oder mit
der Summe seiner Seitenquadrate oder mit anderem mehr iibereinstimmt. Als ein Anwen-
dungsgebiet seien isoperimetrische Ungleichungen erwéhnt.

Dieter Ruoff, University of Regina, Canada
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W B W N e

ANMERKUNGEN

[1*] Die Ausdriicke n-Eck und Polygon bedeuten im folgenden dasselbe. — Man beachte, dass unsere allgemeine
Theorie keine Einschrinkung der Dimension von V(K) verlangt. Hingegen muss von Abschnitt 4 an
Char K t n erfiillt sein.

[2*] Ist der minimale Annullator von 4 # 0 in der fritheren Formel (6) gleich m ,(x), so stelit die entsprechende
Linearbeziehung (1) die Rekursionsformel von A4 dar.

[3*] Mit g(x) ist auch h(x) = c-g(x)(c #+ 0) grosster gemeinsamer Teiler von p(x) und ¢(x), und es gilt
h(x) = (cp, (X)) p(x) + (cq, (x))g(x). Um der Eindeutigkeit willen stipulieren wir, dass der GGT zweier
Polynome den Anfangskoeffizienten 1 haben soll. In gleicher Weise wollen wir, wo von einem Primteiler cines
Polynoms die Rede ist, einen solchen mit Anfangskoeffizient 1 verstehen.

[4*] Man beachte, dass wir von der Verschiedenheit von Polynomen mit Anfangskoeffizient 1 sprechen (s.
Anmerkung 3).

{5*] Ist unsere Bedingung nicht erfullt, dann auch nicht die zuerst genannte Voraussetzung: Fir Char(K) = p|n
gilt (x — 1)? = x? — 1|x" — 1. Auch manche geometrischen Besonderheiten bestehen, falls Char K |n gilt, wie
z. B., dass ein Vektor keinen nten Teil und ein n-Eck darum keinen Schwerpunkt besitzt.

[6*] Dies ist im wesentlichen der Hauptsatz in [1].

[7*] In [1] wird dem verbandstheoretischen Aspekt dieses Aufbaus grosse Beachtung geschenkt. Die Menge der
Teiler von x" — 1 mit den Operationen GGT, KGV bildet eine Boolesche Algebra, wobei die Primteiler die
Rolle von Atomen haben. Die Menge der diesen Teilern zugeordneten Kerne (d. h. die Menge der zyklischen
n-Ecks-Klassen) mit den Operationen Durchschnitt und Summe bildet eine isomorphe Boolesche Algebra.
Wir verfolgen im vorliegenden Abschnitt das Ziel, die Atome dieser zweiten Booleschen Algebra geometrisch
zu beschreiben.

{8*] In Anlehnung an den traditionellen Polygonbegriff behandeln wir in diesem Abschnitt n-Ecke in der Ebene.
Die Zerlegungstheorie samt Begriindung ist indessen dimensionsunabhingig und gewisse ihrer Konsequen-
zen sind am relevantesten fiir Polygone, die einen drei- oder hoherdimensionalen Raum aufspannen (s. [4],
pp. 7-10).

[9*] Wir denken uns die gegebene reelle Ebene im euklidischen Sinne metrisiert und die anvisierten n-Ecke wie
im komplexen Fall durch Drehungen erzeugt.

[10*] Lineare Abbildungen erhalten die sog. affinen Eigenschaften eines reguldren n-Ecks (Kollinearitét, Paralleli-
tit, Teilverhéltnis von Strecken).

[11*] Ein Beweis findet sich in den gingigen Algebrabiichern (z. B. von van der Waerden, Rédei, Birkhoff-
MacLane).

[12*] Jedes p-Eck (p prim) mit Schwerpunkt 0 ist trivialerweise ein rational-reguldres Polygon. In {1] wird der
grosse Formenreichtum der reguldren 8-, 10- und 12-Ecke figiirlich demonstriert.

[13*] Ein wesentlich ausfiihrlicheres Verzeichnis findet sich in {2).
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