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ELEMENTE DER MATHEMATIK
Revue de mathematiques elementaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

El Math Vol 43 Nr 5 Seiten 129-160 Basel September 1988

Eine kleine ft-Ecks-Lehre

Einleitung

In El Math 37 hat M Jeger eine Reihe von Sätzen uber Polygone zusammengestellt, von
denen sich jeder im Rahmen der komplexen Zahlenebene elementar beweisen lasst Die
betreffenden Satze können noch in einer anderen Hinsicht unter einem gemeinsamen
Blickwinkel betrachtet werden, sie lassen sich namhch ohne Ausnahme in der Sprache
der von F Bachmann begründeten n-Ecks-Theone formulieren Dies hat zur Folge, dass

ihr Beweis nur die Faktorzerlegung von Polynomen und das Losen linearer Gleichungssysteme

erfordert
In dem vorliegenden Artikel wird das Ziel verfolgt, den Kern der erwähnten n-Ecks-
Theone elementar, aber lückenlos zu entwickeln Eine anspruchsvollere Darstellung der
Theorie findet der Leser entweder in dem Onginalwerk [1] oder, in ausgebauter Form,
in [2]

Fur die Anregung, eine zusammenfassende Arbeit uber die n-Ecks-Theone zu schreiben,
mochte der Verfasser Herrn Professor M Jeger seinen herzlichen Dank aussprechen
Dazu mochte er hervorheben, dass ihn lange Jahre der Zusammenarbeit an n-Ecks-

Fragen erst mit J Shilleto und spater auch mit J C Fisher verbanden

1. Wir denken uns im folgenden ein n-Eck als ein n-Tupel von Vektoren (Ecken) in einem
Vektorraum K(X)[1*] Im Rahmen unserer Untersuchungen werden wir n-Ecke
ausschliesslich mit anderen n-Ecken in Beziehung setzen, n also als eine jeweils feste Grosse
betrachten Unser Interesse wird sich dabei auf diejenigen Eigenschaften eines n-Ecks

richten, welche aus den seine Ecken verbindenden zyklisch invarianten Linearbeziehun-

gen hervorgehen Diese grundlegend wichtigen, ein n-Eck A =(aQ,ql, ,an x) beschreibenden

Beziehungen werden am besten in rekursiver Form wiedergegeben

Qi+k coai + ci #i + i> + + cfc-i #i+k-i>

i 0,l, n - 1, al + v ql + v fur i + v' i + v(mod n) (1)

Eine rekursive Formel (1) mit fe ^ n — 1 nennen wir eigentlich, die rekursive Formel

al+n 1 gt + 0 ql + 1 + +0 al+n l9 die von jedem beliebigen n-Eck A erfüllt wird,
trivial Unter der Rekursionsformel eines n-Ecks verstehen wir seine kürzeste rekursive
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Formel (1). Sie ist, wie wir zeigen werden, gewöhnlich eindeutig bestimmt Die Menge
aller n-Ecke A, welche eine rekursive Formel (1) mit vorgegebenen Koeffizienten

c0,c_,..., ck__ erfüllen, wird eine zyklische Klasse genannt (s. [1], p. 24).

Beispiele 1-3

1. Ein Viereck (g0,gl9g29g3)9 welches der Formel gl + 3 gx — al+1 + gl+2 genügt, ist ein
Parallelogramm. 2. Ein n-Eck (g0,gl,...9gn_l)9 dessen sämtliche Ecken identisch sind,
wird durch gl + 1 gx beschrieben. 3. Jedes n-Eck (g09g1,...,gn_1), insbesondere aber ein
n-Eck, dessen Ecken keine eigentliche lineare Rekursivbeziehung eingehen, erfüllt die
triviale rekursive Formel gl+n 1 >gx + 0-gl + 1 + + 0-gl+n_l.

Wie ersichtlich tragen wir der zyklischen Natur eines n-Ecks nicht durch seine Definition
sondern dadurch Rechnung, dass wir es mit Hilfe von zyklisch invarianten Beziehungen
unter seinen Ecken beschreiben. Die n-Ecke selbst sind als Vektor-n-Tupel Elemente des

Raumes Vn(K) und können dort addiert und mit einem Skalar aus K multipliziert
werden:

(go,gi,".,gn-i) + (b0,bl9...9bn„1) (g0 + b09gl + b1,...,gn_1 + bn_i),

c(g09Ql9...9aH-1) (cg09cgl9...,caH-l). (2)

Es ist ein Hauptziel unserer Untersuchungen, ein «kompliziertes» n-Eck, d. h. ein solches
mit einer langen Rekursionsformel, mit Hilfe von (2) als eine Linearkombination
einfacherer n-Ecke, d. h. solcher mit kürzeren Rekursionsformeln darzustellen.

2. Wir können die zyklisch invariante Beziehung (1) als ein System von n vektoriellen
Gleichungen auffassen:

Qk =c0g0 +cigl + + ck„1gk_i
2*+i c0gl +ctg2 + + ck_xgk

Qk-i CoQn-i +c1g0 + +cfc_1afc_2

gV' gv für v' v (mod n). (3)

Wie wir sofort erkennen, handelt es sich bei (3) um eine lineare Gleichung unter n-Ecken
des Vn (K)9 und zwar unter solchen, die durch zyklisches Weiterrücken der Ecken auseinander

hervorgehen. Wird der Operator des zyklischen Weiterrückens mit x bezeichnet,
d.h. gilt

x (g09gi9...9gn.1) (gi9g2, ...9gn_i9g0)

x2(g0,g1,...9gn_l) (g29g39...9g09a1) (4)

und allgemeiner für A (a0,a1,...,a„_.1);c0,c1,...,ckeXJ

(c0 + cxx + + ckxk)A c0A + cx(xA) + + ck(xk A), (5)
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so können die in (1) bzw. (3) ausgedrückten Beziehungen indexfrei durch

(xk-ck_lxk~1 -...-c1x-c0)A =0, 0 (0,0,...,0), (6)

wiedergegeben werden.

Beispiele 4-6

4. Die in den Beispielen 1-3 betrachteten Polygone entsprechen den nachstehend
beschriebenen: Ein Parallelogramm ist ein Viereck A4, das die Gleichung
(x3 — x2 + x — l)/44 0 erfüllt. Ein Translations-n-Eck, d. h ein n-Eck der Form
A =(g,g,...,g), genügt der Bedingung (x — 1)A 0. Jedes beliebige n-Eck A befriedigt
die Gleichung (xn — 1)A 0. - Es folgen einige weitere n-Ecke in indexfreier Beschreibung.

5. In einem n-Eck A, das (x2 — 1)A 0 erfüllt, stimmt jede Ecke mit der zyklisch
übernächsten überein. Falls n 2m gilt, hat A die Form (g,b,g,b,...,g,b) eines m-fach
durchlaufenen Zweiecks. Ist n 4= 2m, so hat A die Form (g,b,..., g,b,g), wobei zusätzlich
gilt, dass die zweitletzte Ecke, b, gleich der ersten Ecke, g, ist. Damit wird A zum
Translations-n-Eck (g,g,..., g). In ähnlicher Weise fällt in einem n-Eck, das der Gleichung
(x3 — 1)A 0 genügt, jede Ecke mit der zyklisch über-übernächsten zusammen. Für
n 3m ist A ein m-fach durchlaufenes Dreieck (g,b,c,g,b,c,..., g,b,c), für n =f= 3m ist A

wiederum ein Translations-n-Eck. 6. Erfüllt das n-Eck A die Beziehung (x + 1)A 0, so
hat A die Form (g, — g,g, — a,...). Für n 2 m ist A ein m-fach durchlaufenes Zweieck
mit Schwerpunkt 0, für n + 2 m gilt A 0.

Es erhebt sich die Frage, ob die in (5) definierte Verknüpfung von n-Ecken A,B,... aus
Vn (K) mit Polynomen p (x), q (x),... aus dem Bereich K [x] bestimmten Gesetzen
gehorcht. In der Tat vermögen wir leicht nachzuweisen, dass die erwähnten n-Ecke und
Polynome die Beziehungen

(p(x) + q(x))A =p(x)A + q(x)A, (7 a)

p(x)(A + B)=p(x)A +p(x)B, (7b)

(P M q (*)) A=P(x) (q W ^) und (7 c)

1-A=A (Id)

erfüllen, d.h. einen Modul mit Multiplikatorenbereich K[x] bilden. Aus (7c) und der
Kommutativität unserer Polynome folgt zudem

p(x)(q(x)A) q(x)(p(x)A). (8)

Die Linksmultiplikation von n-Ecken mit x oder mit einem Polynom in x kommt einer

Abbildung des Vektorraums der n-Ecke in sich gleich. Die Abbildung ist linear, wie aus

(7 b) und (7 c) leicht folgt. Wir werden für sie den Bachmannschen Ausdruck einer zyklischen

Abbildung brauchen.
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3. Ein Polynom, welches, wie dasjenige in der obigen Formel (6), ein n-Eck A auf das

Null-n-Eck 0 (0,0,..., 0) abbildet, wird ein Annullator von A genannt. Es zeigt sich,
dass man die Eigenschaften eines Polygons am besten mit Hilfe seiner Annullatoren
herleiten kann. Dabei liefern zwei Annullatoren, die sich lediglich um einen konstanten,
nicht verschwindenden Faktor unterscheiden, dieselbe Information. Gewisse Polynome,
wie das (gradlose) Körperelement 0 oder wie x" — 1, annullieren sämtliche n-Ecke; besondere

Aussagen über ein einzelnes n-Eck sind aus ihnen natürlich nicht herleitbar.
Es sei nun A ein n-Eck, p (x) ein Annullatorpolynom von A und m (x) ein Annullatorpolynom

niedrigsten Grades von A. Dann ist p(x) durch m(x) ohne Rest teilbar. Wäre das

Gegenteil der Fall, dann handelte es sich bei dem Restpolynom r(x) — p (x) — f (x)m (x)
entgegen unseren Annahmen um einen Annullator von A mit einem niedrigeren Grad als
dem von m (x). Mit Hilfe des eben Bewiesenen folgt sofort, dass das n-Eck A von den und
nur den Polynomen p (x) annulliert wird, welche m (x) als einen Faktor enthalten.
Dividieren wir das Polynom m(x) durch seinen Anfangskoeffizienten c, so erhalten wir ein
normiertes Polynom mÄ (x), das gleichermassen Teiler aller und nur der Annullatoren von
A ist. Wir nennen mA (x) das zu A gehörige Polynom oder den minimalen Annullator von
A [2*].
Soviel zur Menge der Annullatoren eines gegebenen n-Ecks A. Wir betrachten nun
umgekehrt die Menge der von einem festen Polynom p (x) annullierten n-Ecke, seinen
Kern. Diese letztere, bereits früher erwähnte Menge, die zyklische Klasse von p (x), ist
sowohl additiv als auch in bezug auf Multiplikation mit einem Skalar abgeschlossen und
bildet daher einen Unterraum von Vn (K). Aus der Kommutativität der zyklischen
Abbildungen ergibt sich leicht, dass jede zyklische Abbildung t (x) die zyklische Klasse von/? (x)
in sich abbildet. Ist nämlich A ein beliebiges n-Eck der erwähnten Klasse, d. h. ein n-Eck,
das der Gleichung p(x)A =0 genügt, dann erfüllt A auch t(x)p(x)A 0 und damit

p (x) t(x)A 0. Es folgt also, dass mit A auch t (x) A zur zyklischen Klasse von p (x)
gehört.
Wir kommen nun zu zwei Sätzen aus der Modultheorie, welche für unsere Untersuchungen

grundlegend sind. Ihr Beweis stützt sich auf den folgenden bekannten Satz: Sind/?(x),
q(x) zwei Polynome mit dem grossten gemeinsamen Teiler #(x), s° kann man stets

Polynome px (x), qx (x) finden, welche g(x) px (x)p(x) + qx (x)q(x) erfüllen [3*]. In der
Folge gilt mit p(x)A q(x)A 0 stets auch GGT(p(x),q(x))A 0.

Zerlegungssatz. Zu einem n-Eck, das durch das Produkt der teilerfremden Polynome
p(x), q(x) annulliert wird, existieren eindeutig bestimmte n-Ecke B, C, welche die Summe
A haben und durch p(x) bzw. q(x) annulliert werden: Ist

p (x) q (x) A 0, GGT(p (x), q (x)) 1, (9)

so existiert genau ein Paar von n-Ecken B9 C, so dass

A B + C, p(x)B q(x)C 0 (10)

gilt.

Beweis. Erfüllen px(x), qx(x) die Beziehung 1 px(x)p(x) + qx(x)q(x), dann genügen
B qx(x)q(x)A und C px(x)p(x)A den Gleichungen(10). Die Bedingung (10) be-
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stimmt B, C eindeutig Genügen auch B', C derselben, so können wir B' B, C C
beweisen, indem wir aus B' — B C — C und p (x) (Bf — B) — q (x) (C — C) 0
zunächst q (x) (B' - B) p (x) (C - C) 0 und daraus GGT (p (x), q (x)) (B' - B)
1 (B - B) GGT(p(x),q(x))(C - C) 1 (C - C) 0 herleiten D

Urbüdsatz Wird das n-Eck B durch das Polynom p (x) annulliert und ist q (x) zu p (x)
teilerfremd, so existieren n-Ecke A, die durch q(x) auf B abgebildet werden Ist

p(x)B 0, GGT(p(x),q(x)) l, (11)

so existieren n-Ecke A, so dass

q(x)A B (12)

gilt

Beweis Erfüllen px(x),qx(x) die Beziehung 1 px(x)p(x) + qx(x)q(x), dann gilt
B px(x)p(x)B + qx(x)q(x)B 0 + qx(x)q(x)B q(x)qx(x)B Das n-Eck A qx(x)B
wird also durch q(x) auf B abgebildet D

Der Zerlegungssatz kann dahin ergänzt werden, dass mit p (x) B 0 und q (x) C 0

auch /? (x) g (x) (B + C) 0 gilt Zum Beweis des Urbildsatzes ist zu bemerken, dass das

konstruierte Urbild A von B gleich B durch p(x) annulliert wird Mit dieser
Sondereigenschaft steht A =qx(x)B unter den Urbildern von B allein da, weil sich aus

q(x)A' q(x)A B und p (x) A' =p(x)A=0 sofort GGT (p (x), q (x)) (Af - A)
1 (Af - A) 0 und damit /4' A ergibt
Unsere beiden Satze samt Ergänzungen können fur zyklische Klassen formuliert werden

Sind/7(x), q (x) teilerfremde Polynome, so ist die zyklische Klasse vonp(x) q (x) die direkte
Summe derjenigen \onp(x) und derjenigen \onq(x) (Zerlegungssatz), das Polynom g(x)
bildet die zyklische Klasse von p (x) q (x) auf die (in ihr enthaltene) Klasse von p (x) ab und
wirkt dabei als Permutation der letzteren Klasse (Urbildsatz)

Beispiel 7 (Zerlegungs- und Urbildsatz)

Wir bezeichnen ein Sechseck A =(g0,gx, ,g5) als Prisma, wenn seine grossen Diagonalen

(g0 g3, g2 g5,gA.gx) parallelgleich sind, d h wenn sie die Seitenkanten eines dreiseitigen
Prismas darstellen (Fig 1) Die Ecken eines solchen Prismas bestimmen sich rekursiv aus
der Formel aI+4 - aI + 1 - (gl + 3 - gt), i 0,1, ,5, und genügen damit

(x4 + x3-x-lM =0

Aus der Faktorzerlegung

(x4 + x3 - x - 1) (x3 - l)(x + 1), GGT(x3 - l,x + 1) 1,
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Figur 1

ergibt sich mit Hilfe des Zerlegungssatzes die Existenz und Eindeutigkeit von Sechsecken

B, C, die

A=B + C, (x3 -l)B (x + l)C 0

erfüllen Unser Prisma ist also die Summe eines zweifach durchlaufenen Dreiecks und

eines dreifach durchlaufenen Zweiecks mit Schwerpunkt 0 (s Beispiele 5, 6) Aus
x3 - 1 (x2 - x + l)(x + 1) - 2 (Eukl Algorithmus) folgt

(-i)(x3-l) + (ix2-fx + i)(x + l) l

und daher nach dem Beweis des Zerlegungssatzes

B (\x2-\x + \)(x + l)A9 C (-\)(x3-l)A

In unserer Figur ist das gegebene (zweidimensionale) Prisma A =((—2,-2), (1,5),
(0, - 2), (0,4), (- 1, - 1), (2,4)) und damit B ((- 1,1), (0,2), (1,1), (- 1,1), (0,2), (1,1)),
C ((- 1, - 3), (1,3), (- 1, - 3), (1,3), (- 1, - 3), (1,3)) Nach dem Beweis des Urbildsat-
zes hat B das Urbild Au (\x2 — \x + |)B bezuglich x + 1, wobei Au gleich B em
zweifach durchlaufenes Dreieck ist Fur B wie oben ist Au - ((0, 0), (- 1,1), (1,1), (0,0),

(-1,1), (1,1))



El. Math., Vol. 43, 1988 135

4. Jedes n-Eck A genügt der Formel (x" — 1)A 0. Das bedeutet gemäss den Betrachtungen

in Abschnitt 3, dass x" — 1 durch das zu A gehörige Annullatorpolynom ohne
Rest teilbar ist. Ein Polynom mA(x) besitzt also keineswegs eine beliebige Primteilerzerlegung,

sondern vielmehr eine solche, deren Faktoren derjenigen von xw — 1,

xn — 1 =px(x)p2(x)...pk(x), entnommen sind. Welche Polynome Primfaktoren pt(x)
von x" — 1 sind, hängt vom gegebenen Koeflizientenkörper K ab. Wir behaupten, dass

wenn die Charakteristik yon K kein Teiler von n ist, x" — 1 in paarweise verschiedene
Primfaktoren zerfällt [4*].
Zum Beweis gehen wir von einem Körper K aus, in dessen Polynombereich das Polynom
x" — 1 den Faktor (p(x))s besitzt, wo p(x) prim und s 2 ist. Die Ableitung nx"'1 von
x" — 1 ist dann durch (p(x))s~i teilbar und damit durch p(x). Das Polynom p(x) ist dabei
aber nicht gleich x, weil x kein Teiler von xn — 1 ist, was bedeutet, dass nx"-1, um durch
p(x) dividierbar zu sein, identisch verschwinden muss. Nun ist xn~ \ n-mal zu sich selbst

addiert, nur dann für alle x gleich 0, wenn der unseren Betrachtungen zugrunde liegende
Körper K eine Charakteristik aufweist, die gleich n oder gleich einem echten Teiler von
n ist. Unter den Bedingungen der Behauptung existiert der Teiler (p (x))s von x" — 1 also
nicht. D
Wir wollen im folgenden voraussetzen, dass das bezüglich unserer n-Ecke definierte

Multiplikatorpolynom xn — 1 über dem gegebenen Koeffizientenkörper K in lauter
verschiedene Primfaktoren zerfällt. Auf Grund des vorangegangenen entspricht diese

Voraussetzung der von nun an als erfüllt angesehenen Bedingung, dass der unserem Vektorräum
V(K) zugrunde liegende Körper Keine Charakteristik besitzt, die kein Teiler von n ist [5*].
Wir beschließen diesen Abschnitt mit zwei unmittelbaren und wichtigen Konsequenzen
des früheren Zerlegungssatzes, die nur unter den eben gemachten Bedingungen gültig
sind.

Zerlegungssatz (zweite Version) [6*]. Ein n-Eck + 0 kann in genau einer Weise als Summe

von nichtverschwindenden n-Ecken dargestellt werden, welche Primfaktoren des

Polynoms x" — 1 als Annullatoren haben. Die betreffenden Primfaktoren sind die minimalen
Annullatoren der ihnen zugeordneten Summanden-n-Ecke und ihr Produkt ist gleich
dem minimalen Annullator mA(x) von A.

Bemerkung. Wir betrachten hier nur solche Zerlegungen von A, in denen Glieder, die von
denselben Polynomen annulliert werden, schon addiert sind.

Beweis. Es ist klar, dass das Null-n-Eck 0 die Konstante 1 als minimalen Annullator
besitzt und jedes andere n-Eck ein nichtkonstantes Polynom. Wird das n-Eck A + 0 von
einem (normierten) Primpolynom annulliert, so handelt es sich bei diesem automatisch
um den minimalen Annullator.
Gemäss dem früheren Zerlegungssatz gibt es genau eine Zerlegung von A,A=BX+ + Br,
deren Glieder der Reihe nach von den Primfaktorenpx(x), ...,pr(x) des zu A gehörigen
Polynoms mA (x) annulliert werden. Es kann dabei keines der n-Ecke ß • gleich 0 sein, weil
sonst A Bx + + Bx_x + Bi+X + + Br und in der Folge (mA(x)/pi(x))A 0 wäre,

entgegen der Definition von mA(x). Also ist für alle ip((x) der minimale Annullator von
ß, und die angegebene Zerlegung von A eine Summendarstellung im Sinne der Behauptung.
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Liegt irgendeine andere Zerlegung von A vor, deren Glieder durch Primpolynome annulliert

werden, so wird A wiederum vom Produkt derselben annulliert Dieses Produkt ist
damit durch mA (x) teilbar und zahlt in der Folge px (x), pr (x) (nebst anderen
Primpolynomen) unter seinen Faktoren Wir behaupten, dass unsere neue Zerlegung von der
Form A Bx + + Br + 0 + +0ist Zum Beweis stellen wir zuerst fest, dass wir die

gegebenen Pnmfaktoren den angeführten Summanden in eineindeutiger Weise als

Annullatoren zuordnen können Nun bestimmen aber diese Faktoren (nach dem ersten
Zerlegungssatz) die ihnen zugeordneten Summanden eindeutig Das bedeutet, dass die

vorliegende Zerlegung von A die angegebene Form hat Weil in ihr aber O-Terme auftreten,

ist sie keine Zerlegung im Sinne der Behauptung Die einzige solche ist also die im
vorigen Abschnitt beschriebene D

Translatwnssatz Das n-Eck A hat genau dann den Schwerpunkt 0, wenn das zu ihm
gehörige Annullatorpolynom mA (x) nicht durch x — 1 teilbar ist Gilt mA (x)
(x — l)m^(x), so existieren eindeutig bestimmte Polygone TA, A°, welche

A TA + A°, (x-l)TA m°A(x)A° 0,

erfüllen, wo TA (t,t, ,t) em Translations-n-Eck + 0 und A° ein n-Eck mit Schwerpunkt

0 darstellt

Beweis Beachten wir den Zerlegungssatz, so müssen wir lediglich beweisen, dass

wenn mA (x) den Faktor x — 1 nicht enthalt, A den Schwerpunkt 0 hat Ist x — 1

kein Faktor von mA (x), dann ist das Polynom xn~l + xn~2 + + 1 wegen
xn - 1 =(x - l)(x"_1 + x"~2 + +1) durch mA(x) teilbar Es gilt dann also

(xn~l + xn~2 + +1).4=0 Hat A den Schwerpunkt 5, dann hat das Polygon auf der
linken Seite der letzten Gleichung den Schwerpunkt n s Das Polygon auf der rechten
Seite hat den Schwerpunkt 0, es gilt also ns 0 und damit s 0 D

5. Wie wir im vorigen Abschnitt gesehen haben, baut sich jedes n-Eck aus einfachsten
n-Ecken auf, welche schon von Primpolynomen annulliert werden Dabei müssen diese

primen Polynome Teiler von xn — 1 sein, was heisst, dass es gerade soviele Arten von
Bausteinen gibt, wie Primfaktoren von xn — 1 [7*] Wir werden im folgenden, von der

Pnmteilerzerlegung von xn — 1 im komplexen, reellen und rationalen Fall ausgehend die

jeweils einfachsten n-Ecke charaktensieren
Die Losungen der Gleichung x" 1, die nten Einheitswurzeln, sind im Rahmen des

hm fk '

komplexen Zahlsystems mit w0,wx, ,wn_1 identisch, wo wk e =cos(-27r
fk \ \n

+ i sin I - 2 n 1 ist fur fe 0,1, n — 1 Die Emheitswurzel wk wird primitiv genannt,

falls die minimale positive Grosse v, fur die wk e =1 gilt, gleich n ist Offensichtlich
ist wk genau dann primitiv, wenn fe und n teilerfremd sind Fur alle n ist w0 1

Wir entnehmen dem vorangehenden Absatz, dass das Polynom xn — 1 die Pnmteilerzerlegung

xB — 1 (x — w0)(x — wx) (x — w„_1) aufweist Ein n-Eck, das vom Faktor

x — wk dieser Zerlegung annulliert wird, ist augenscheinlich von der Form
(g, wfca, ,wk~i g), d h es hegt auf einer Geraden durch 0 des Vektorraums V (C)
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Wir beschränken uns in den folgenden Untersuchungen auf den besonders interessanten
Fall, dass der gegebene Vektorraum V (C) eindimensional und somit mit einer einzigen
komplexen Geraden identisch ist. Seine Punkte können demgemäss als komplexe Skalare
angesehen werden und damit als Elemente der Gaussschen Zahlenebene. Ein betrachtetes
n-Eck im besonderen wird zum n-Tupel komplexer Zahlen und so zu einer n-punktigen
Figur in dieser Ebene [8*].
Die für uns speziell wichtigen n-Ecke (a, wk a,..., wj~ * a), a + 0, mit der (v + l)ten Ecke

— 2 7t I

wk a e n a gehen aus a durch hintereinander erfolgende Rotationen mit Zentrum 0
fe

und Drehwinkel - 2 n hervor,
n

Gilt GGT (fe, n) 1, d. h. ist wk eine primitive n-te Einheitswurzel, so sind alle Ecken von
A (a, wk a,..., wl"1 a) voneinander verschieden und A ist ein reguläres n-Eck mit
Schwerpunkt 0. Für fe 1 ist A ein konvexes, positiv umlaufenes Polygon; für fe n — 1

n-1 n-1 1

können wir den Drehwinkel 2n mit 2n — 2n 2n identifizieren, wo-
n n n

durch A als ein konvexes, negativ umlaufenes n-Eck erscheint; in allen anderen Fällen ist
A ein Stern-n-Eck.
Ist GGT(k,n) uk,uk > 1, und setzen wir fe k! uk, n nkuk9 so ist der wk zugeordnete

fe k!
Rotationswinkel - 2 n gleich — 2 n. Daraus und aus GGT (fe', nk) 1 folgt, dass es sich bei

n nk

(a, wk a,..., wl~l a) um ein ufc-fach durchlaufenes reguläres nfc-Eck mit Zentrum 0 handelt.
Ist fe 0, wk w0 =1, so stimmt A =(a,w0a,..., w0~

* a) mit dem Translations-n-Eck
(a, a,..., a) überein.
Die Bausteine aller komplexen n-Ecke sind also neben den Translations-n-Ecken die

regulären n-Ecke mit Zentrum 0 und die ufe-fach durchlaufenen regulären (n/ufc)-Ecke mit
Zentrum 0. Ein n-Eck der Form (a, wk a,..., wl ~1 a), fe + 0, wird im folgenden k-regulär
genannt.

Beispiele 8, 9

Es handelt sich bei ihnen um zwei Sätze aus der in der Einleitung zitierten Arbeit von M.
Jeger (Primärquellen daselbst), für die wir einen Beweis im Sinne unserer Theorie geben.

8. (Propellersatz). Sind (0,a9a')9 (09b9bf) und (0,c,c') drei o.B.d.A. positiv umlaufene,
gleichseitige Dreiecke, welche ihre erste Ecke im Ursprung haben, so ist das aus den

Mittelpunkten der Strecken d b, b' c und c' a gebildete Dreieck M (a", b"9 c") ebenfalls

positiv umlaufen und gleichseitig (Fig. 2).

Beweis. Aus unseren Annahmen folgt, dass das Dreieck D - (a, b, c) durch eine

60°-Drehung um den Ursprung in D' (a',bf,c') übergeführt wird, d.h., dass

D' w6 XD e(^i^)2nijy g||t |3jese Gleichung können wir unseren Zwecken besser

anpassen, wenn wir den zu regulären Sechsecken gehörigen Faktor w6 x cos (n/3)

+ i sin (n/3) durch — w2 — e2'3 2ni — cos (4 nß) — i sin (4 nß) ersetzen und so mit w2
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b'<

Figur 2
CX3^ ao

Figur 3

eine regulären Dreiecken zugeordnete Zahl ins Spiel bnngen Beachten wir noch

xD (b, c, a), so haben wir

M \(xD + D) \(x + w6 X)D \(x - w2)D

und in der Folge

(x - l)(x - wx)M \(x - l)(x - wx)(x - w2)D |(x3 - 1)D 0

Aus der letzten Gleichung schhessen wir, dass M TM + M° ist, wo TM ein Translations-
n-Eck und M° em positiv umlaufenes, reguläres (gleichseitiges) Dreieck mit Zentrum 0
darstellt D

9 Werden uber den Seiten eines Vierecks Quadrate ernchtet, und zwar entweder alle nach
aussen oder alle nach innen, dann definieren die erhaltenen Quadratmittelpunkte ein
Viereck, dessen Diagonalen gleichlang sind und aufeinander senkrecht stehen

Beweis Das gegebene Viereck sei als Quadrupel A =(a0,ax,a2,a3) so durchlaufen, dass
die konstruierten Quadrate in bezug auf es rechts liegen Bilden die Mittelpunkte dieser

Quadrate das Viereck B (b0,bx,b2,b3), so werden die Verbindungsvektoren entsprechender

Ecken von A und B durch eine Drehstreckung der Seitenvektoren von A erhalten

Aus dem Seitenvektorenviereck (x — 1)A erhalten wir das Viereck der Verbindungsvektoren

B-A, indem wir jeden Vektor auf -^2/2 seiner Lange verkurzen und um — 45°
drehen (s Fig 3) Es gilt also B - A (cos(- n/4) + ism(- n/4))(y/2/2)(x - 1)A, oder
kurzer

B H(l-i)x + (l+i)]A
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Das Viereck der Diagonalvektoren von B,D (x2 — 1)15, genügt in der Folge der
Gleichung

D i[(l-i)x3 + (1 + i)x2 - (1 - i)x - (1 + OM

Multiplizieren wir D mit x — wx x — e(1,A)2nl x — i, so erhalten wir unter Beachtung
von(x4- 1)A =0

(x - wx)D (x - OD ±[(1 - 0*4 - (1 - OM 0

Damit ist gezeigt, dass es sich bei D um ein positiv umlaufenes, konvexes, reguläres
Viereck mit Schwerpunkt 0 handelt Das Diagonalenviereck D von B ist also ein Quadrat
mit Zentrum 0, was beweist, dass zwei benachbarte Diagonalenvektoren von B gleichlang
sind und aufeinander senkrecht stehen D

Bemerkung Die Zerlegungstheorie komplexer n-Ecke kann auch von einem ganz anderen
Ansatz her angegangen werden Um diese zweite Interpretation zu erläutern, wählen wir
ein beliebiges n-Eck A (a0,ax, an_x) und denken uns dasselbe vollständig in seine
regulären und Translationskomponenten zerlegt

A=(x0,x0, ,x0) + (x1,w1x1, ,w"l-1xx)+ +(x„ ,,w„ ,x. j, ,wnn-\x„

wk en
nl

fur fe 0,l, ,n- 1 (13)

Nicht auftretende Komponenten seien dabei als O-n-Ecke eingefugt Eine leichte Modifikation

von (13) ergibt

_4 x0(l,l, A) + xx(l,wx, ,wnx~1)+ +xn_x(l,wn_x, ,wnnZ{) (14)

und wird bei Benutzung der Abkürzungen R0 (1,1, 1), Rx (1, wx, w""l), ,Rn-x
(l,wn_x, ,w^:J)zu

A x0R0 + xxRx + +xn_xRn_x (15)

Offensichtlich bilden die Polygone R0,RX, ,#„-_ eine Basis des Vektorraums aller
komplexen n-Ecke Aus den Gleichungen (13) berechnet sich die Koordinate xk von A als

1

xk -(a0 VPj + ax wl + + fl-_! wnk l), fe 0,1, n - 1,
n

wk e-»2"' (16)

Sie ist der kte endliche Fourier-Koeffizient von A und die Gleichungen (14), (15) sind die
endlichen Fourier-Reihen-Darstellungen von A (s [5])
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Wir gehen nun zur Charakterisierung der einfachsten Polygone der reellen Ebene über
und studieren zu diesem Zweck die Zerlegung von xn — 1 in Primfaktoren mit reellen
Koeffizienten. Das reelle Zahlsystem ist im komplexen enthalten und so ist jedes reelle

Polynom automatisch auch ein komplexes Polynom. Ein reelles Polynom braucht aber
nicht unzerlegbar zu sein im komplexen Bereich.
Zunächst hat xn — 1 den reellen linearen Primteiler x — w0 x — 1, der zu den
Translations-n-Ecken (g,g,..., g)9 g + 0, gehört. Dazu kommt, falls n eine gerade Zahl ist,
der Primteiler x — wn/2 x + 1, welcher die n-Ecke der Form (g, — g,g, — g,..., g, — g)
annulliert (s. das frühere Beispiel 6).

Alle anderen Primfaktoren haben, wie wir gleich zeigen werden, die Form

(x- wk)(x
fk \ n

vn_k) x2 - 2cos(-27i lx + 1, k + 0,-. (17)k

Aus der trigonometrischen Darstellung von wk,wn_k folgt, dass die Gleichung von (17)
n

stimmt und dass wk, w„_fc für fe + 0,- nichtreelle Grössen sind. Auf der rechten Seite von

(17) steht also ein reelles Primpolynom.
Zu den Polygonen, die vom Polynom in (17)fc annulliert werden, gehören zunächst einmal
die euklidisch fe-regulären n-Ecke [9*]. Sind nämlich _?/,«;+1,^ + 2 drei zyklisch
aufeinanderfolgende Ecken des fe-regulären n-Ecks A (g0,gx, ...,gn-x) und ist mt der Mittelpunkt

von ö,,aJf2, so gilt wegen |0,a,| \0,gl M | die Beziehung m, |-(fl, + al + 2)

fk \
cos I -2 n I • gt+ x (s. Fig. 4(a)). Und diese entspricht, für alle i beachtet, der Gleichung

-2cos(-2tc lx + IM =0.

Wird eine lineare Transformation auf das n-Eck A angewandt, so entsteht aus demselben

ein n-Eck A' (g'0,g'l9...9g'n-x), dessen Ecken durch die gleichen linearen Beziehungen

verbunden sind. Es gilt also für alle i |(aj + g'i + 2) cos( ~2n )aj+1 und A' erfüllt

x- - 2 cos (-2 n\ x + IM' 0 (Fig. 4(b)).

ao
J_H

n
__3

03

&4

Figur 4 (a)

a. Q/

/
ä3' _uV

&4

Figur 4 (b)
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Sind a0,gx zwei linear unabhängige Vektoren und g'0,g'x zwei beliebige weitere Vektoren,
so gibt es genau eine lineare Transformation, die g0 in a0 und gx in dx überfuhrt (Sie bildet
x x0 g0 + xx gx auf x' x0 g'0 + xx g\ ab) Wir können also em und nur ein n-Eck A'
finden, dessen erste zwei Ecken a0',g'x vorgegeben sind und das Glied um Glied aus A

durch eme lineare Transformation hervorgeht Nun ist A' aber überhaupt das einzige
fk \

n-Eck, das die Anfangsecken g'Q,g'x und den Annullator x — 2 cos \-2n\x + 1 besitzt,

fk \
da diese Vorgaben die spateren Ecken induktiv bestimmen Die von x2 — cos I - 2 n 1 x + 1

annullierten n-Ecke sind also entweder fe-regular oder sie gehen aus einem fe-regularen
n-Eck durch eine lineare Transformation hervor Wir nennen die betreffenden n-Ecke, die
wesentlichen Bausteine allgemeinerer n-Ecke, k-affin-regular [10*] Der Begriff schhesst

eindimensionale Polygone mit ein

Bemerkung Es gibt auch in der Gaussschen Zahlenebene fe-affin-regulare n-Ecke Sie

haben denselben Annullator und dieselbe Gestalt wie diejenigen in der reellen Ebene Was

sie aber von letzteren unterscheidet, ist, dass sie weiter zerlegt werden können, und zwar,
wie aus (17) hervorgeht, in ein fe-regulares und ein (n — fe)-regulares n-Eck
Wir fugen hier noch an, dass der bekannte Satz von Napoleon-Barlotti (s [2], [4]), der
affin-regulare und reguläre n-Ecke verbindet, in der Gaussschen Ebene bewiesen werden

muss, weil die regulären n-Ecke in der reellen Ebene keine durch ein Polynom definierte
zyklische Klasse darstellen

Beispiel 10

Aus der Faktorzerlegung x4 — 1 (x — l)(x + l)(x2 + 1) folgt, dass jedes Viereck A die

Darstellung A (b,b,b,b) + (c, — c,c, — c) + (d,e, — d, — e) besitzt Wegen x2 + 1

(x — i)(x + 0 (x — wx)(x — w3) x2 — 2cos(|27i)x + 1 gilt, dass der letzte
Summand, ein Parallelogramm mit Schwerpunkt 0, im Reellen unzerlegbar ist und durch eine
lineare Transformation aus einem Quadrat (al9al + x) cos * cos(^27r) f hervorgeht

Als letztes beschreiben wir die einfachsten Bausteine von n-Ecken in der rationalen
Ebene Fur die dazu notige Bestimmung der Primfaktoren von x" — 1 gehen wir wie im
reellen Fall davon aus, dass die rationalen Primfaktoren gleich komplexen Primfaktoren
oder gleich Produkten komplexer Primfaktoren sind
Den diesbezüglichen Betrachtungen sei vorausgeschickt, dass wo wir von Teilern von
x" — 1 sprechen, wir den komplexen Polynombereich anvisieren Auch werden wir ohne
besondere Erwähnung von der Äquivalenz der Aussagen «fe ist ein Teiler von /» und
«xk — 1 ist ein Teiler von \' — 1» Gebrauch machen Die Abkürzungen fur «ist Teiler
von» und «ist ein echter Teiler von» sind |, ||

Wir beginnen mit zwei Definitionen Die Menge C(t), wo t\n gilt, umfasse diejenigen
Primfaktoren von xn — 1, die auch Teiler von x* — 1 sind, nicht aber Teiler von xT — 1 fur
T < t

C(t) {x-wk x-wk\xf-l,Jfxx-l, fur x<t},(t\n) (18)
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Offenbar umfasst C(t) genau diejenigen linearen Polynome x — wk, deren Konstante eine

primitive t-te Einheitswurzel ist. Man beachte, dass das System der Mengen C(t) eine

Klasseneinteilung der Menge aller Primteiler von x" — 1 darstellt. - Die Menge D (t), wo
11 n gilt, umfasse die sämtlichen Primfaktoren von xl — 1:

D(t) {x-wk:x-wk\xt-l}, (t\n). (19)

Zusammengenommen enthalten die Mengen D(t) alle Primteiler von x" — 1, wobei sie

sich aber gegenseitig überlappen. Für das folgende ist wichtig, dass D (t) die Vereinigungsmenge

der Klassen C(t), die x\t erfüllen, darstellt. Es gilt also

D(t) {JC(x) (20)

und in der Folge

C(t) D(t)\{JC(r). (21)
r\\t

Aus (20) folgt unschwer (J C(t) (J D(t), was mit (21) kombiniert
t||* ty.

C(t) D(t)\{jD(x) (22)

ergibt. - Wir werden die Formeln (21), (22) im Zusammenhang mit gewissen Polynomen
brauchen, die den Klassen C (t) zugeordnet sind. Unter dem Kreisteilungspolynom Ft (x)
verstehen wir das Produkt der Polynome x — wk aus C(t).
Wir wollen im folgenden zeigen, dass die Kreisteilungspolynome Ft(x),t\n, rationale
Koeffizienten haben. Dazu bemerken wir zuerst, dass das Produkt der komplexen
Primpolynome aus (JC(t) gleich TlFz(x) ist. Das mit ihm identische Produkt der

Primpolynome aus (J D (x) (die Mengen D (t) überlappen) ist gleich dem
tili

KGV {xx - 1 :t II *}. Daraus resultiert nach (21), (22)

^"HFn' e^tz/V 1 ha CW* WYlFt(x) KGV {xx — 1t||_}
t|U

Da Zähler und Nenner des zweiten Bruches rationale Koeffizienten haben, trifft das auch
für den Quotienten Ft(x) zu. Man kann sogar zeigen, dass alle Kreisteilungspolynome
ganzzahlige Koeffizienten haben und - für uns wichtiger - dass sie im rationalen Bereich

prim sind [11*].
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Beispiel 11 (Bestimmung der in x20 — 1 enthaltenen Kreisteilungspolynome)

Diese ergeben sich gemäss Formel (23) aus Fx (\)

Fx (x) x — w0 x — 1

F2(x)

FAx)

F5(x)

^io W

F20(x)

x2 + 1

Wir nennen die von den Kreisteilungspolynomen Ft(x), t\n, annullierten Polygone, die
Bausteine rationaler Polygone, rational-regulär (in [1] Q-regular) jst p^ ^ ^QY mimmale
Annullator des n-Ecks B (b0,bx, bn_ x), so gilt wegen Ft(x)|xr — 1, dass B ein (n/t)-
fach durchlaufenes f-Eck darstellt Ist t > 1 und t irgendein echter Teiler von t, so sind
nach (23) xT — 1 und Ft(x) teilerfremd Nach dem Urbildsatz gibt es dann ein n-Eck
A (g0,ax, ,an x), das (xr — 1)A B genügt Die angegebene Beziehung zwischen
A und B enthalt insbesondere die Gleichungen gt+k gk + bk,g2x+k ax+k + bt+k

gk + bk + bt+k, gt+k gk + bk + bt±k + + b{t_t)+k und, da sich die Ecken von
B nach t Schritten wiederholen, gn+k gk + (n/t)(bk + bt+k+ + £(r_T)+fc) Wegen

g„+k — gklst die Eckensumme des r-fach uberspnngenden (t/z)-Ecks (bk,bx+k, ^(f_t)+fe)
gleich 0 (Diese Aussage gilt fur jedes t, t || t, und jedes (o B d A < x gehaltene) fe)
Geometrisch gesprochen zeichnet sich ein rational-reguläres, (n/f)-fach durchlaufenes t-Eck
also dadurch aus, dass seine zu jedem echten Teiler t von t existierenden t-fach überspringenden

Teil-(./r)-Ecke denselben Schwerpunkt haben wie das f-Eck selbst [12*]

Schlussbemerkung

Die n-Ecks-Theone kann in mannigfacher Weise entwickelt und angewandt werden
Als n-Ecke können nicht nur n-Tupel von Vektoren angesehen werden, sondern auch
unendliche Folgen von Vektoren, ja sogar die Punkte von Ovalen mit den Neigungswinkeln

ihrer Tangentenvektoren als Indizes Vor allem aber kann der Raum Vn(K), in dem

x2-l x2--1 x+ 1

fiW X --1

xA-l
X)

x4-l
X2 + 1

FA*)F2(. (*¦- l)(x + 1)

x5-i x5 -1 X* + X3 + x2 + X + 1

FAx) X --1

x10- 1 X10- 1 x5 + 1

X + 1KGV {x -1, x2--l,x5-l} (x + l)(x:!-l)
X4 - X3 + X2 X + 1

x20-l x20-l
KGV {x -1 ,x2 - l,x4- l,x5-l,x10--1} (x2 + l)(x10- 1)

X10 + 1
X8 - X6 + x4 --X2: + l
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ein n-Eck gesamthaft als ein Vektor auftritt, metrisiert werden. (Man beachte dazu den
Titel «Perpendicular Polygons» von [2].) Es ist möglich, das innere Produkt zweier
n-Ecke so zu definieren, dass das Normquadrat eines n-Ecks mit seiner Fläche oder mit
der Summe seiner Seitenquadrate oder mit anderem mehr übereinstimmt. Als ein
Anwendungsgebiet seien isoperimetrische Ungleichungen erwähnt.

Dieter Ruoff, University of Regina, Canada
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ANMERKUNGEN

[1*] Die Ausdrucke «-Eck und Polygon bedeuten im folgenden dasselbe - Man beachte, dass unsere allgemeine
Theorie keine Einschränkung der Dimension von V(K) verlangt Hingegen muss von Abschnitt 4 an
Char KJfn erfüllt sein

[2*] Ist der minimale Annullator von A 4= 0 in der früheren Formel (6) gleich mA (x), so stellt die entsprechende
Linearbeziehung (1) die Rekursionsformel von A dar

[3*] Mit g{x) ist auch h(x) c g(x)(cj=0) grosster gemeinsamer Teiler von p(x) und q(x), und es gilt
h(x) (cp1(x))p(x) + (cql(x))q(x) Um der Eindeutigkeit willen stipuheren wir, dass der GGT zweier
Polynome den Anfangskoeffizienten 1 haben soll In gleicher Weise wollen wir, wo von einem Primteiler eines

Polynoms die Rede ist, einen solchen mit Anfangskoeffizient 1 verstehen

[4*] Man beachte, dass wir von der Verschiedenheit von Polynomen mit Anfangskoeffizient 1 sprechen (s

Anmerkung 3)

[5*] Ist unsere Bedingung nicht erfüllt, dann auch nicht die zuerst genannte Voraussetzung Fur Char(K) p\n
gilt (x — \)p — xp — 1 \xn — 1 Auch manche geometrischen Besonderheiten bestehen, falls Char K\n gilt, wie
z B, dass ein Vektor keinen nten Teil und ein n-Eck darum keinen Schwerpunkt besitzt

[6*] Dies ist im wesentlichen der Hauptsatz in [1]

[7*] In [1] wird dem verbandstheoretischen Aspekt dieses Aufbaus grosse Beachtung geschenkt Die Menge der
Teiler von xn — 1 mit den Operationen GGT, KGV bildet eine Boolesche Algebra, wobei die Pnmteiler die

Rolle von Atomen haben Die Menge der diesen Teilern zugeordneten Kerne (d h die Menge der zyklischen
n-Ecks-Klassen) mit den Operationen Durchschnitt und Summe bildet eine isomorphe Boolesche Algebra
Wir verfolgen im vorliegenden Abschnitt das Ziel, die Atome dieser zweiten Booleschen Algebra geometrisch
zu beschreiben

[8*] In Anlehnung an den traditionellen Polygonbegnff behandeln wir in diesem Abschnitt n-Ecke in der Ebene

Die Zerlegungstheone samt Begründung ist indessen dimensionsunabhangig und gewisse ihrer Konsequenzen

sind am relevantesten fur Polygone, die einen drei- oder hoherdimensionalen Raum aufspannen (s [4],

pp 7-10)
[9*] Wir denken uns die gegebene reelle Ebene im euklidischen Sinne metnsiert und die anvisierten n-Ecke wie

im komplexen Fall durch Drehungen erzeugt
[10*] Lineare Abbildungen erhalten die sog affinen Eigenschaften eines regulären n-Ecks (Kolhneantat, Paralleli¬

tät, Teilverhaltnis von Strecken)
[11 *] Ein Beweis findet sich in den gangigen Algebrabuchern (z. B von van der Waerden, Redei, Birkhoff-

MacLane)
[12*] Jedes p-Eck (p pnm) mit Schwerpunkt Q ist tnvialerweise ein rational-reguläres Polygon In [1] wird der

grosse Formenreichtum der regulären 8-, 10- und 12-Ecke figürlich demonstnert
[13*] Ein wesentlich ausfuhrlicheres Verzeichnis findet sich in [2]
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