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Positive derivatives and increasing functions

A function with positive derivative on an interval is increasing. While the generalization
of this note is classical (cf. [3, p. 44] and [4, p. 364]), the proof offered below is simple
enough to present in an honors calculus class and works for extensions of the derivative
to which the usual proof, based on the mean-value theorem, does not apply. For a more
complicated proof of a less general result, see Bourbaki [2, pp. 19-21].
Below, D will denote any of the following Operators: the derivative, the right- (or left-)
hand derivative, the right (or left) upper (or lower) Dini derivative, the Symmetrie derivative.

Definition of these Operators can be found in [3] and [4],

Theorem. Let f be continuous on [a, ft] and suppose that Df > 0 on (a, b)\ S, where S is

countable. Then f(b) > f(a).

Proof. First we show that /(ft) f(a). Suppose not; then /(a) > /(ft). Choose y such that
f(a) > y > /(ft) and y$f(S); this is possible since f(S) is countable and hence does not
exhaust the interval (/(ft), f(a)). Let C {x 6 [a, ft]: f(x) > y}. Since a e C, C is nonempty.
Set c sup C. From the definitions of C and c it follows that

(i) if x > c, then f(x) — y

(ii) for each ö > 0 there exists x such that c — 6 < x c and /(x) > y

Suppose f(c) > y; then, since / is continuous, f(c + s) > y for small e > 0, contradicting
(i). On the other hand, if f(c) < y, then f(c — s)<y for small e > 0, which contradicts (ii).
Thus f(c) y. From (i) and (ii) it is now evident that Df(c) 0, contradicting the

assumption that Df > 0 on (a,b)\S. Thus /(ft) ^ f(a).
To complete the proof, take x e (a, ft) and apply the result derived above to the intervals
[ö, x] and [x, ft], obtaining f(a) S f(x) /(ft). If /(ft) /(fl), / is constant on [a, ft]; hence

/' 0, contradicting Df > 0. Thus /(ft) > /(fl), and / is strictly increasing on [a, ft].

Remarks. 1. The argument given above fails for the upper left Dini derivative D~~.

To handle that case, consider instead c' inf{xe[fl,ft]: /(x) < y) and observe that
D~f(cf)<:0.
2. When D is the derivative, the hypothesis that / is continuous is superfluous. Simple
examples show that it is necessary in all other cases.
3. Let x denote the usual Cantor function on [0,1] and put f(x) x/2 + x(l — x). Then

/ is continuous and /'(x) 1/2 a.e., yet /(0) 1 > 1/2 /(l). This shows that «countable»

cannot, in general, be enlarged to «measure zero.»
The subsequent development is Standard. Suppose / is continuous on [a, ft]. If Df 0 on
(fl, b)\S, we may apply the theorem to f(x) + e(x — a) and let e -? 0+ to conclude that /
is nondecreasing on [a,b]. In case Df < 0 (Df — 0), the previous results applied to —/
show that / is decreasing (nonincreasing). Finally, if Df 0 on (fl,ft)\S, then / is

constant, since in this case it is both nondecreasing and nonincreasing on [a, ft].



El Math, Vol 43,1988 121

Further generalizations, based on relaxing the hypothesis of continuity and involving the
notion of measure zero, are surveyed in [3, pp. 44-46].

Lawrence Zalcman, Dep. of Mathematics,
Bar-Ilan University, Ramat-Gan, Israel
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Aufgaben

Aufgabe 965. Einer Parabel sei eine Folge von sie doppelt berührenden Kreisen

Ki9K2,... einbeschrieben, wobei Kl der Scheitelkrummungskreis sei und jeder der
Kreise den folgenden berühre. Man ermittle für beliebiges «eN das Verhältnis rjrt
(rt Radius von Kt).

C. Bindschedler, Kusnacht

Lösung. Auf Grund der Ähnlichkeit genügt es, eine Parabel zu betrachten, z. B. die
Parabel y2 2 x mit der Subnormalen 1. Ist rn der Radius des n-ten Kreises, so haben die

Berührungspunkte mit der Parabel die Koordinaten v + >/r2 — 1 und x (r2 — l)/2.
Demzufolge hat der Mittelpunkt des n-ten Kreises die Abszisse (r2 + l)/2. Für die
Abszisse des Berührungspunktes mit dem (n + l)-ten Kreis gilt dann

(r2n+
_

+ l)/2 -rn+1= (ri + l)/2 - rn, d. h.

(rn+1-l)2/2 (rn + l)2/2,

woraus rn+l rn + 2 folgt. Da, wie man leicht sieht, rx 1 ist, gilt rn 2 n — 1 und somit
allgemein rjr^ 2n — 1.

J. M. Ebersold, Winterthur

Weitere Lösungen sandten J. Binz (Bolligen), W. Janous (Innsbruck, A), Klasse 7 d
(Kantonsschule Zug), L. Kuipers (Sierre), O. P. Lossers Jr. (Eindhoven, NL), V. Mascioni
(Origlio), S. Nanba (Okayama, Japan), I. Paasche (Stockdorf, BRD; 2 Lösungen),
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