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Suggestions for further research. We observe that in all cases presented above, as in the
real case, the periodic continued fractions are symmetric. Namely, for period length k we
havea; = a;_;and b; = b, ,_;forj=1,2,..., k — 1. Further, a, = 2-a, appears to hold,
as in the real case. We found no examples of odd period length.

There is also a connection to Pell-like equations. We illustrate this with the example

376 €@s. Let p,/q, be the nth convergent of the continued fraction expansion, defined
by '

p_1=1, Po = do> pnzan.pnﬂl'{—sb"'pn—l’. forn;l,
4-,=0,9,=1,9,=a, ¢, +5-q,-, forn=x1.

Put
p:—-376-q>?=d, - 5", c,eN, d,eZ, 54d,.

Then we find that ¢, = 3 b;, and the sequence {d,},- _, is given by 1, —3,17, —4, 17,

j=0
—3,1, —3,17,..., which is symmetric. The fifth convergent p5/qs = 12 103/603, for which

ds = 1, gives rise to a sort of 5-adic fundamental unit> 12 103 + 603 - , /376, in the sense

that p; e + dive; - /376 = (p; + q; - </376) - (ps + g5 - \/376)’ for i=—1,0,...,4,
andj =0, 1,2,.... It would be interesting to have a more general theory of these matters.

B. M. M. de Weger, Faculty of Applied Mathematics,
University of Twente, Enschede
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A further remark concerning Nagel cevians

Dedicated to Professor D. S. Mitrinovi¢ on his 80th birthday

In El. Math,, vol. 41/5 and 42/4, R. H. Eddy and D. S. MiloSevic considered the cases
L = 14 and (the improvement) L = 10, resp., of

>n,<9r+ L(R—2r). 1)

Here n,, n,, n, are the Nagel cevians and R, r the circumradius and inradius, resp., of the
given triangle.
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In this note we show that the minimal L for (1) satisfies
6.258998... < L_. < 6.478487....

min —

The lower bound is sup {F (x), x > 1} with F (x) as given below in i); the upper bound is
the largest root of 2x* — 3x? — 144 x + 515 = 0.

Proof. Let N, be the foot of n, on side BC. Then, BN, = s — ¢, and from the triangle ABN,
it follows via the law of cosines that

nt=c*+(s—c?*—2c(s—c)cosB.

After some algebraic manipulations this simplifies to

n,=s/(b —c)? + 4rja

where s represents the semiperimeter of the given triangle.
i) Considering triangles with c =2 and a=b=x, x > 1, we get r = \/(x —1/(x + 1),

R=x*2/x*—1,n.=/x*—1and n,=n, = /x +1./(x —2)*(x + 1) + 4(x — 1)/x.

Inserting this in (1) we get after some algebraic manipulations

L>F(x):=2x—1{2x+ 2)\/(x —2x+1D)+4(x-1)
+ (x? — 8x)/x — 1}/x(x — 2)%

Numerical calculations lead to L > F(4.699...) = 6.258998 ... =:m.
ii) The inequality between the arithmetic and square root means yields

. Xn,</3%ng,
e Sn, <s{3X(h% + c2—2bc + 4r)ja*} VA )

FromYa? =2s* —8Rr —2r*and X bc=r* + s> + 4Rrwegeth? + c* —2bc + 4r?
=2ab+2ac — a* — 16 Rr. This and (2) yield

Sn,<s{6X(b+c)a—9—48RrX1/a*}'2. (3)
We leave it as an exercise to the reader to derive the identities > (b + c)/a

=(s>+r?)/2Rr — 1 and 3 1/a* = {(s> + 4Rr + r?>)/4Rrs}?> — 1/Rr. Therefore (3) be-
comes

Sn, < {(ORs?> —3rs* —48 R*r — 24 Rr? — 31r°)/R}'/2. (4)
Let M = 2L — 9. For (1) we now consider

9Rs* —3rs? —48R*r —24Rr* —3r* <I?R?®* —2LMR?*r + M?*Rr?,
2 < {I2R® + (48 — 2LM)R2r + (M? + 24)Rr> + 3r3}/OR — 37r) =1 A. (5)

1.e.
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From [1], item 5.10, the inequality

s?<2R*+ 10Rr—r*+2(R—-2r/R*—2Rr=:B
is known. Coupling it with (5) we now have to study B < A4, i..
6(R—2r)3R —r)/R® —2Rr < (I? —18)R® — (36 + 2LM)R*r + (M? + 63)R+?

=R{(I> —18)R?> — (4> —18 L + 36)Rr + (41> — 36 L + 144)r?}.

Dividing the last inequality by (R — 2r)\/7{ > 0 we arrive at

6(3R—1/R—2r <. /R{—18)R — (2> —18L + 72)r}. (6)
Because of R > 2r ([1], item 5.1) the right hand side of (6) is non-negative.
Squaring (6) we get upon letting u = I? —18 and v =212 — 18 L + 72

324R3> — 864 R?*r + 468 Rr> — 72r3 < u?R3®> — 2uvR?*r + v?*R#?,
ie.
f(O):=@w?*—324)1t> + (864 — 2uv)t?> + (¥ — 468)t + 72> 0,

where we put t = R/r (= 2).
It is easily checked that f (2) = 2(v — 2u)* > 0. Furthermore, f attains its local min-

imum at t, = (— q + \/q*> — 3pr)/3 p, where we set p = u> — 324, g = 864 — 2uv and
r = 0% — 468.

We claim: g2 — 3pr >0 for L > m.

Indeed,

q* — 3pr =u?v* + 1404 u* + 9720 — 3456 uv + 291 600
— (uv — 540)2 + 108 u2 {9 (v/u)? — 22 (v/u) + 13}
> (uv — 540)% — 48 u?

where we used g(t):=9t%> — 22t + 13 > — 4/9 for te R. Furthermore, from v > 36 we
obtain (uv — 540)> — 48u? > 48 {27 (u — 15> —u?} > 0 if u(3\/§ —1)=>45 \/3, ie.
L > {18 +45./3/(3./3 — 1)}'/* = 6.0477.....

As it seems hopeless to get bounds for L from the inequality f (¢,) = 0 we restrict
ourselves to t,, < 2 (and we are done because of f (2) = 0), i.e.

V@ —3pr<6p+q. (7
In order to square (7) we have to assure ourselves of 6p + g > 0, i.e.

6u? —2uv—1080 > 0, ie. (I* —18)(? + 18 L — 126) > 540, ie. L > 6.25....
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For these values of L (7) becomes

12p+4q+r>0,ie 12u®> —8uv + v? > 900, ie.
(L—6) 2 +9L —90)>25 ie L>647....

But this was to be shown.
Added in proof. There is now high numerical evidence for the conjecture:

L. =6258998....

Remarks. 1) It should be noted that in El. Math., vol. 35/5, R. H. Eddy proved the
inequality

Xn,=3m,
where m,, m,, m, denote the medians of the given triangle. This and [1], item 8.3, i.e.
>m,=>9r
yield the following converse of (1)
>n,=9r.
2) Inequality (4) and [1], item 5.9, i.e.
s> <4R*>+4Rr+3r?
immediately lead to
>n,<6R—12r.

3) It remains an open question to determine the precise value of L_;, .

W. Janous, Ursulinengymnasium, Innsbruck
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