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Suggestions for further research. We observe that in all cases presented above, as in the
real case, the periodic continued fractions are Symmetrie. Namely, for period length k we
have a} ak^} and ft. ftfc+ x _J fory 1, 2,..., k — 1. Further, ak 2 • a0 appears to hold,
as in the real case. We found no examples of odd period length.
There is also a connection to Pell-like equations. We illustrate this with the example
^/316e(Q5. Let pn/qn be the nth convergent ofthe continued fraction expansion, defined

by

P-l *> A) tf0> Pn an'Pn-l +5bn'Pn-2 for H ^ 1

4-1=0, <_0 1, qn an-qn_i + 5K • qn_2 for n 1

Put

p2 - 376 • q2n dn • 5<-, cneN, dneZ, 5Xdn.

n

Then we find that cn £ ®r and the sequence {dn}nK)=z_1 is given by 1, —3, 17, —4, 17,
_=o

— 3,1, — 3,17,..., which is Symmetrie. The fifth convergent p5/q5 12 103/603, for which
d5 1, gives nse to a sort of 5-adic (fundamental unit> 12 103 + 603 • ^376, in the sense

that pl + 6j + ql + 6j-j376 (pl + ql-j376)'(p5 + q5'j316)J for i= -1,0,...,4,
and; 0,1, 2, It would be interesting to have a more general theory of these matters.

B. M. M. de Weger, Faculty of Applied Mathematics,
University of Twente, Enschede
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A further remark concerning Nagel cevians

Dedicated to Professor D. S. Mitrinovic on his 80th birthday

In El. Math., vol. 41/5 and 42/4, R. H. Eddy and D. S. Milosevic considered the cases

L 14 and (the improvement) L 10, resp., of

IX<9r + L(l?-2r). (1)

Here na9nb, nc are the Nagel cevians and R, r the circumradius and inradius, resp., ofthe
given triangle.
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In this note we show that the minimal L for (1) satisfies

6 258998 < Lmin < 6 478487

The lower bound is sup {F(x),x > 1} with F(x) as given below in i), the upper bound is
the largest root of 2x3 - 3x2 - 144 x + 515 0

Proof. Let Na be the foot of na on side BC Then, BNa s - c, and from the triangle ABNa
it follows via the law of cosines that

n2 c2 + (s — c)2 — 2c(s — c) cos B

After some algebraic mampulations this simphfies to

na s J(b-c)2 + 4r2/a

where s represents the semipenmeter of the given triangle
i) Considenng triangles with c 2 and a b x, x > 1, we get r y/(x — l)/(x + 1),

R x2\2^x2 - 1, nc y/x2 - 1 and na nb y/x + l y/(x - 2)2(x + 1) + 4(x - l)/x
Inserting this in (1) we get after some algebraic mampulations

L > F(x) 2jx- l{(2x + 2)x/(x-2)2(x + l) + 4(x-1)
+ (x2 - 8x)V/x-l}/x(x - 2)2

Numerical calculations lead to L > F(4 699 6 258998 ra

n) The inequahty between the anthmetic and square root means yields

5X<V32X>
zZna<s{3Y(b2 + c2-2bc + 4r2)la2}112 (2)

From][>2 2s2 - %Rr - 2r2andJ^bc r2 + s2 + 4#rwegetft2 + c2-2ftc + 4r2
2aft + 2ac - a2 - 16Rr This and (2) yield

zZna <s{6^(b + c)/a -9- 48Kr£l/tf2}1/2 (3)

We leave it as an exercise to the reader to derive the identities _£(ft + c)/a
(s2 + r2)/2Rr- 1 and £l/a2 {(s2 + 4Rr + r2)/4Rrs}2 -1/Rr Therefore (3)

becomes

XX ^ {(9Rs2 - 3rs2 - 48K2r - 24Rr2 - 3r3)/,R}1/2 (4)

Let M 2L — 9 For (1) we now consider

9Rs2 -3rs2 - 4SR2r- 24Rr2 - 3r3 < l2R3 - 2LMR2r + M2Rr2,
le

s2 < {L2R3 + (48 - 2LM)R2r + (M2 + 24)Rr2 + 3r3}/(9R- 3r) A (5)
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From [1], item 5.10, the inequality

s2 < 2R2 + lORr - r2 + 2(R - 2r)^R2 -2Rr =:B

is known. Coupling it with (5) we now have to study B < A9 i.e.

6(R - 2r)(3R - r)^R2 -2Rr < (I2 - 1%)R3 - (36 + 2LM)R2r + (M2 + 63)Rr2

R{(L2 - 18)R2 - (4L2 - 18 L + 36)Rr + (4L2 - 36L + 144)r2}.

Dividing the last inequality by (R — 2 r) y/H > 0 we arrive at

6(3R - r)^R-2r <J~R{(l} - 1%)R - (2I2 - 18L + 72)r}. (6)

Because of R > 2r ([1], item 5.1) the right hand side of (6) is non-negative.

Squaring (6) we get upon letting u L2 — 18 and v 213 — 18L + 72

324R3 - 864R2r + 468Rr2 - 12r3 < u2R3 - 2uvR2r + v2Rr2,
i.e.

f(t):= (u2 - 324)r3 + (864 - 2uv)t2 + (v2 - 468)t + 72 > 0,

where we put t R/r (> 2).

It is easily checked that / (2) 2 (v — 2 ü)2 > 0. Furthermore, / attains its local
minimum at tm (— q + -Jq2 — 3pr)/3p, where we set p u2 — 324, q 864 — 2 u v and
r =_ v2 - 468.

We claim: q2 — 3pr > 0 for L > ra.

Indeed,

q2 - 3pr u2v2 + 1404u2 + 972t;2 - 3456wt; + 291 600

(u v - 540)2 + 108 u2 {9 (v/u)2 - 22 (v/u) + 13}

>(wt;-540)2-48w2

where we used g (t): 912 — 221 + 13 > — 4/9 for t e R. Furthermore, from v > 36 we
obtain (uv - 540)2 - 48u2 > 48 {27(u -15)2-u2}>0 if u(3y3 - 1) > 45^/3, i.e.

L > {18 + 45^/3/(3-73 - *)}1/2 6.0477....
As it seems hopeless to get bounds for L from the inequality / (tm) > 0 we restrict
ourselves to tm < 2 (and we are done because of / (2) > 0), i.e.

Jq2-3pr<6p + q. (1)

In order to square (7) we have to assure ourselves of 6p + q > 0, i.e.

6ti2 - 2uv - 1080 > 0, i.e. (L2 - 18)(L2 + 18L - 126) > 540, i.e. L > 6.25....
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For these values of L (7) becomes

12p + 4q + r> 0, i.e. 12w2 - Suv + v2 > 900, i.e.

(L - 6)(2L2 + 9L - 90) > 25, i.e. L > 6,47....

But this was to be shown.

Added in proof. There is now high numerical evidence for the conjeeture:

Lmin 6.258998....

Remarks. 1) It should be noted that in El. Math., vol. 35/5, R. H. Eddy proved the

inequality

X^>X^a
where ma, mb, mc denote the medians of the given triangle. This and [1], item 8.3, i.e.

Zma>9r

yield the following converse of (1)

Hna>9r.

2) Inequality (4) and [1], item 5.9, i.e.

s2 <4R2 + 4Rr + 3r2

immediately lead to

Yna<6R-2r.

3) It remains an open question to determine the precise value of Lmm.

W. Janous, Ursulinengymnasium, Innsbruck
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