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Wir verzichten notgedrungen auf weitere Darstellungen und auch auf spezielle
Literaturangaben Statt dessen nennen wir lediglich einige Übersichtswerke Sollte ein
Leser noch nicht völlig verschreckt sein (hoffentlich gibt es solche') und gar den
Wunsch haben, noch mehr zu erfahren, so sei er auf die ausführliche Bibliographie
zur Designtheorie in [3] verwiesen (sie wurde inzwischen auf uber 1000 Titel erweitert1)

Dort kann er unter den im vorliegenden Text angegebenen Autorennamen
genaue Literaturhinweise finden und dann mit dem Studium dieses hochaktuellen, aber
auch äusserst interessanten Gebietes beginnen Viel Vergnügen und viel Erfolg'

H Zeitler, Math Institut, Universität Bayreuth
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Periodicity of p-stdic continued fractions

A well known theorem of Lagrange states that the simple continued fraction expansion
of a real number is periodic if and only if that real number is quadratic irrational Several
authors have tned to establish analogous results for continued fractions of /?-adic numbers

The present author [3] showed that such a result is possible if one Starts with
sequences of approximation lattices of/?-adic numbers, instead of continued fractions We

note that from a periodic sequence of approximation lattices of a /?-adic number £ it is

easy to construct a periodic continued fraction expansion of £

This process of constructing the continued fraction such that it is periodic, is the reverse
of the process in the real case, where one Starts by defining the continued fraction, and
then tnes to prove its periodicity It would be interesting to obtain periodicity results for
a given p-adic continued fraction expansion method, e g that introduced by Schneider [2]
Bundschuh [1] remarks that for this type of /?-adic continued fractions a periodic
continued fraction represents either a rational /?-adic number of special type, or a quadratic
irrational p-adic number (analogous to Euler's theorem) Further, he gives some numencal

evidence indicating that the converse (analogous to Lagrange's theorem) may not be

true
It is the purpose of this note to show that for Schneider's continued fraction algorithm
for p-adic numbers, it may indeed happen that quadratic irrational numbers in Qp have

non-penodic continued fraction expansions Thus for this type of continued fractions an
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analogue of Lagrange's theorem is not true Some cnteria (but not exhaustive) will be

given for (non)-penodicity The examples that Bundschuh treated numencally are proved
to be non-penodic
Let p be prime Let { e Qp be a nonzero /?-adic integer Schneider [2] defines the continued
fraction expansion of { as follows Put £0 £ Given a /?-adic integer £n for some n e N0,
let ane{0,1, ,p — 1} be such that ft„ ordp(^„ — an) is positive We continue only if
£n ^ an Then defme £n+1 by

pK
£„ «„ + 7

Cn + 1

Then | £J p
1 and an ^ 0 for all n > 0 Now the continued fraction expansion of £ is

£ a0 + p-J + p-J +

Note that Bundschuh [1] has a shghtly, but not essentially, different definition and
notation
We say that the continued fraction expansion of £ is periodic if there exist m0 e N0, k e N
such that am+k am,bm+k bm for all ra ^ m0 Bundschuh [1] asks to prove or disprove
periodicity for the continued fractions of ^ Je, for c e TL not a square, but a quadratic
residue (mod/?), so that ^gQ., ao for the four examples (c,p) — 1,5), (2,7), (5,11),
(3,13)
There exist unique rational numbers Pn, Qn such that

Qn

for neN0 Then P0 0, Q0 1, and we have the recursion formulas

P«+i =~(P.-a. Qn),

Q„+1=(c-P„2+1)//" Qn

We show that P„ and Q„ are integers, and that Q„ \ c — P„2, for all « e N0 It is obvious for
n 0 Suppose it is true for some n ^ 0 Then P„+1 is obviously an integer Further,

c - Pn2+1 c - P„2 + 2 __ P„ Q. - a„2 Q„2 0 (modß.),
and

c-p„2+1 (_>„+1 + yö (-pn+1 + v?)
« + 1+V/c) «-a.ß. + >/c)
(Pn+1 + V?) «. - a.) Q„ 0 (mod/-),

hence Q„+1 is integral It follows at once that Q„+l\c — Pn2+1 We now prove the following
lemma
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Lemma. Iffor some n the signs ofPn and Qn are different and P2+ x > c then the continued
fraction of\/ceQp is non-perwdic

Proof. Since Pn and Qn have different signs, it follows by the recursion formula for Pn+ x

that Pn and Pn+1 have different signs By the recursion formula for Qn + 1 and by Pn\ x > c

it follows that Q„+1 #0, and Qn and Qn+1 have different signs Hence the signs of Pn + 1

and Qn+i are different Further, by an+1 #0,

l^ + 2l l^+ll+tf„+l lß„+ll>l^+1|,

so that Pn\ 2 > c Consequently, the conditions for the lemma hold for n + 1 as well
Hence, by induction, | Pn | ->> oo as n -? oo But periodicity of the continued fraction implies
periodicity of Pn and Q„, which contradicts that \P„\is unbounded D

Corollary. If c < 0 then the continued fraction of JceQ±p is non-perwdic

Proof. If c < 0 then always P2 > c Further, Px a0 > 0, and Qx (c - P2)/pb° < 0

Apply the lemma for n 1

Examples. The four examples of Bundschuh all satisfy the conditions for the above
lemma with n 1 We give a few details below

1. y— 1 e Q5 The non-penodicity follows from the corollary We have in fact, if we take

J-l 2 (mod 5),

n Pn Qn an K

0 0 1 2 i
1 2 -1 1 i
2 -3 2 2 2

and the continued fraction Starts with

51 51 251 51 51 51 51 51 1251 51

^+^J+rrJ+^+[?+[_J+f_J+riJ+rTJ+[?-
51 51 51 1251 51

,+[_J+f_J+rrJ+rrJ+[?+

2. >/2eQ7 We take J2 3 (mod 7) Then we have

n Pn Qn a» K

0 0 1 3 1

1 3 -1 1 1

2 -4 2 3 2
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3. >/5eQ11 We take ^/5 4 (mod 11) Then we have

115

n Pn Qn an K

0 0 1 4 1

1 4 -1 3 1

2 -7 4 2 1

4. J3e<f2l3 We take J3 4 (mod 13) Then we have

n Pn Qn <*» K

0 0 1 4 l
1 4 -1 5 l
2 -9 6 10 l

Next we show that there are also many /?-adic quadratic irrationals that do have periodic
continued fraction expansions, as defined above Let ceNbea non-square, that can be

written as c e2 + d pk for d, e, keN with 1 e *(p — 1) and d\2e,pjfd Then we
find

n Pn Qn an K

0 0 1 e k
1 e d 2e/d k
2 e 1 2e k
3 e d 2e/d k

so that the continued fraction is periodic with period length 2

We conclude by giving some «exceptional» pairs (c,p) which do have periodic
continued fractions, but seem not to fit in an infinite sequence, such as given above They are
(c9p) (136,3), (376,5), (148,7), (388,11) We have (with the bar denotmg the repeating
part)

136 1 +
271 31 31 271

l~2 '

1251 51 51 51 51 1251
376 1 + r?+^+r^+rf+r?+r_J'

491 71 71 491
148-1 + [3+[4+[3+[2<

/ 1211 111 111 1211
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Suggestions for further research. We observe that in all cases presented above, as in the
real case, the periodic continued fractions are Symmetrie. Namely, for period length k we
have a} ak^} and ft. ftfc+ x _J fory 1, 2,..., k — 1. Further, ak 2 • a0 appears to hold,
as in the real case. We found no examples of odd period length.
There is also a connection to Pell-like equations. We illustrate this with the example
^/316e(Q5. Let pn/qn be the nth convergent ofthe continued fraction expansion, defined

by

P-l *> A) tf0> Pn an'Pn-l +5bn'Pn-2 for H ^ 1

4-1=0, <_0 1, qn an-qn_i + 5K • qn_2 for n 1

Put

p2 - 376 • q2n dn • 5<-, cneN, dneZ, 5Xdn.

n

Then we find that cn £ ®r and the sequence {dn}nK)=z_1 is given by 1, —3, 17, —4, 17,
_=o

— 3,1, — 3,17,..., which is Symmetrie. The fifth convergent p5/q5 12 103/603, for which
d5 1, gives nse to a sort of 5-adic (fundamental unit> 12 103 + 603 • ^376, in the sense

that pl + 6j + ql + 6j-j376 (pl + ql-j376)'(p5 + q5'j316)J for i= -1,0,...,4,
and; 0,1, 2, It would be interesting to have a more general theory of these matters.

B. M. M. de Weger, Faculty of Applied Mathematics,
University of Twente, Enschede
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A further remark concerning Nagel cevians

Dedicated to Professor D. S. Mitrinovic on his 80th birthday

In El. Math., vol. 41/5 and 42/4, R. H. Eddy and D. S. Milosevic considered the cases

L 14 and (the improvement) L 10, resp., of

IX<9r + L(l?-2r). (1)

Here na9nb, nc are the Nagel cevians and R, r the circumradius and inradius, resp., ofthe
given triangle.
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