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und zur Forderung des mathematisch-physikalischen Unterrichts

El. Math. Vol. 43 Nr. 4 Seiten 97128 Basel, Juli 1988

Klassisches und Modernes iiber Steiner Tripelsysteme

Ziel der vorliegenden Arbeit ist es, Probleme (es gibt deren sehr viele) und Entwick-
lungen innerhalb der Blockplantheorie, speziell der Steiner Tripelsysteme, zu skizzie-
ren. Es soll also lediglich ein Uberblick vermittelt werden. Dies bedeutet, Verzicht auf
Details, Verzicht auf Beweise. An Hand von Resultaten wird versucht, einzelne Ent-
wicklungslinien aufzuzeigen.

1. Steiner Tripelsysteme — was ist das?
Die im folgenden definierten Begriffe sind weltweit {iblich, nicht aber die Bezeich-
nungen. Einheitlichkeit wére hier wiinschenswert!

1.1 t-Blockpldine S, (t, k, v)

Gegeben sei eine Menge V mit | V| =v Elementen, den Punkten. In ihr weiter eine
Menge B von k-elementigen Teilmengen, den Blocken oder Geraden. Dabei gelte
k =2 und v > k. Schliesslich sollen durch ¢ Punkte (1 =t = k) genau A € N Blocke
gehen. Dann sprechen wir von einem #-Blockplan (¢-Design) und schreiben S; (¢, &, v).
Fiir diese Strukturen lassen sich Sitze beweisen. Wir geben einige von ihnen an.

lB}=b=(Ut—)i;

Durch s Punkte (1 = s = t) gehen genau r; Geraden
v—ys§
o \i=s)
s k _
t—3s

bk=vr, und nk-1)=@w-1)r;

A;

b=v (Ungleichung vonR. A. Fisher)
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1.2 Blockpline. Taktische Konfigurationen

2-Blockpldne S;(2, k,v) werden als Blockpline und Inzidenzstrukturen S, (1, &, v),
also 1-Blockpline, als taktische Konfigurationen bezeichnet.

1.3 Steiner Systeme

Im Falle 1 =1 sprechen wir von Steiner Systemen und schreiben dann kurz S (¢, &, v).

t>3

Von dieser Art kennt man bis heute nur die folgenden Systeme:

S(5,6,n) und S(4,5n—1) mit ne {12, 24,48,72,84);
S(5,8,24) und S(4,7,23);
S(5,7,28) und S(4,6,27)

(E. Witt, R. D. Carmichael, W. H. Mills, R. H. F. Denniston).

Die Systeme S (5,6, 12) und S (5, 8, 24) werden oft als Witt-Designs bezeichnet. Es
handelt sich um wahre Kleinodien der Blockplantheorie.

Nach dem Gesagten ist die zentrale Frage nach der Existenz von S (¢, k,v) mit 1 = 6
unbeantwortet.

t=3, also S(@3,k,v).

Dazu gehoren die Mobius-Raume MG (d,q) und die Steiner Quadrupelsysteme
S(3,4,0) =S0OS (v) (A. Hartmann, C. C. Lindner, W. Neidhardt, A. Rosa).

t=2, also S(2,k,v).

Von besonderem Interesse sind hier die endlichen projektiven Raume PG (d, ¢) und
die endlichen affinen Rdume AG (d, q). Im Falle kK = 3 haben wir es mit den Steiner
Tripelsystemen zu tun, S (2, 3, v) = STS (v). Sie werden uns hier in besonderem Masse
beschiaftigen. Deshalb geben wir zwei Beispiele an. Einmal die projektive Ebene
PG (2,2) der Ordnung 2 und dann die affine Ebene AG (2, 3) der Ordnung 3. Im
ersten Fall handelt es sich um ein ST'S (7), im zweiten um ein ST'S (9) (Figur 1).

PG(2,2)=STS (7 AG (2,3) =STS (9)
Figur 1
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2. Wo gibt es t-Blockpline, wo braucht man sie?

2.1 Etwas Historie: Jakob Steiner (1796 — 1863)

J. Steiner — der bekannte Schweizer Geometer — entdeckte, dass die 9 (bzw. 28)
Wendepunkte einer Kurve dritter (bzw. vierter) Ordnung zu je 3 (bzw. 4) auf einer
Geraden liegen. Diese Punkte bilden dann ein ST'S (9) (bzw. SQS (28)). Seine dies-
beziiglichen Entdeckungen waren von weitreichender Bedeutung sowohl fiir die Funk-
tionentheorie (abelsche Funktionen) als auch fiir die Algebra (Gleichungen 28. Gra-
des).

2.2 Und die Physik?

Im Bereich der Physik sollen Blockpldne bei der Beschreibung der Geometrie des
Atomkerns, aber auch bei der ,,Haufenbildung” (Cluster) in Korpuskularstrahlen eine
wesentliche Rolle spielen.

2.3 Kodierungstheorie — ein sehr modernes Thema

Die Kodierungstheorie ist eine Disziplin, die sich erst in den letzten Jahrzehnten
entwickelt hat. Auch dabei treten wieder ¢-Blockpldne auf. So induziert etwa je-
der 2-Blockplan S; (2, k,v) einen f-fehlererkennenden Kode der Wortlinge b mit
f=2(r;—A)—1 und einen f-fehlerkorrigierenden Kode der Wortlinge b mit
f=ri—2—3. Von ganz besonderer Bedeutung fiir die Kodierungstheorie sind die
bereits erwidhnten Systeme S (4, 7, 23) und S (5, 8, 24). Sie hiingen eng mit dem bi-
niren Golay-Kode zusammen.

2.4 Aufstellung von Versuchsplinen

Zwei Beispiele sollen diese Art Anwendung der Blockplantheorie verdeutlichen. An
einem Schachturnier sind v Personen beteiligt. Jeder Spieler hat r Partien zu spielen.
Gesamtzahl aller Partien? Hinweis: S, (1, 2, v).

v verschiedene Arzneimittel sollen getestet werden. Jedes dieser Medikamente wird
von r Personen getestet und jede Versuchsperson testet k Medikamente. Anzahl der
Testpersonen? Hinweis: S, (1, k, v). Die beiden Beispiele erscheinen recht kiinstlich, ja
kurios. Doch Uberlegungen dieser Art werden bei der Planung statistischer Experi-
mente, bei der Gewinnmaximierung gewisser Spiele (Lottosysteme) oder bei der Or-
ganisation von Fernsprechverteilern tatsichlich und sogar hdufig angewendet (R. A.
Fisher, D. Raghavarao).

Selbstverstindlich finden sich Probleme dieser Art besonders zahlreich im Bereich
der Unterhaltungsliteratur.
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2.5 Eine verriickte Anwendung

Es ist kaum zu glauben! Aber Blockplantheorie ldsst sich sogar zur Losung von Pro-
blemen aus der Geometrie verwenden.

So kann man etwa mit dem schon erwidhnten Steinersystem S (5, 8,24) (iiber das
Leech-Gitter) ausgerechnet im 24-dimensionalen euklidischen Raum eine ,,gute*
Kugelpackung konstruieren (N. J. A. Sloane). Dies iiberrascht um so mehr, als Pro-
bleme dieser Art im Dreidimensionalen noch nicht abschliessend gelost sind.

Im folgenden beschranken wir uns auf Steiner Tripelsysteme ST'S (v). Sie sind im Ver-
gleich zu allgemeineren t-Blockpldnen relativ einfach, stellen aber trotzdem eine
dusserst interessante und reichhaltige Struktur dar.

3. Folklore: Die Existenzbedingungen fiir ST'S (v)

Schon Reverend Thomas Penyngton Kirkman (1806—1895) stellte fest, dass STS (v)
genau dann existieren, wenn v = 7,9 + 6 n mit n € Ny. Die Menge dieser ,,zuldssigen*
Zahlen, der sogenannten Steinerzahlen, bezeichnen wir mit STS. Auf die Trivialfélle
v=1, v =3 wird verzichtet. Dass diese Bedingung notwendig ist, folgt aus den in Ab-
schnitt 1 fiir -Blockpldne ganz allgemein angegebenen Formeln. Will man umgekehrt
beweisen, dass fiir alle v € STS wirklich STS (v) existieren, so bedarf dies genauer
Konstruktionsanweisungen. Damit sind wir bei dem wichtigsten Thema, den Kon-
struktionen.

4. Und wie konstruiert man STS (v)?

Es ist eine grosse Zahl von verschiedenartigsten Konstruktionsverfahren entwickelt
worden. Besonderen Einfallsreichtum bewiesen dabei R. C. Bose und H. Hanani. Wir
unterscheiden direkte und rekursive Konstruktionen und beschrinken uns darauf,
einige Beispiele zu skizzieren.

4.1 Eine direkte Konstruktion

Gegeben sei eine endliche multiplikative Gruppe G ungerader Ordnung 1+ 2n,
n € N. Als Punkte eines Systems STS (3 + 6 n) wiahlen wir die Elemente der Menge
V=G x{l, 2, 3} und als Geraden die folgenden Teilmengen von V:

{(x, 1), (x,2),(x,3)} firallexeg,

{1, (1, 1), (2,2)}, {(x,2), (12, (2 3)},
{(x,3),»,3),(z, 1)} fiirallex,y € G mit x+# y und xy=z2

Zwei so konstruierte Systeme STS (3 + 6 n) sind genau dann isomorph, wenn dies fiir
die verwendeten Gruppen gilt. Die Konstruktion ist insoferne typisch, als sie rein
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kombinatorischen Charakter hat. Ohne Motivation fallt ein Verfahren vom Himmel.
Wunderbarerweise zeigt sich, dass alles stimmt.

Beispiel:

G ={a, b, ¢} sei die zyklische Gruppe der Ordnung 3. Wir geben die Multiplikations-
tafel an. Bs gilt a®? =a, b*=cund ¢?=b.

a b ¢

Q O

a
blb
c

Punkte:

V={(a, 1), (b, 1), (c, 1), (a, 2), (b, 2), (c, 2), (a, 3), (b, 3), (¢, 3)}.

Geraden:

{(a,1),(a,2), (a,3)}, {(b,1),(b,2),(b,3)},
{(a, ), (b, 1), (c,2)}, {(a1),(c,1), (b2}
(@, 2),(5,2),(c,3)), {(a2),(c,2),(b,3)},
{(@,3),(b,3), (¢, D}, {(a,3), (c,3), (b, 1},

{(e, 1), (¢, 2), (c, 3)},
{(b, 1), (¢, 1), (a, 2)},
{(5,2),(c, 2), (a, 3)},
{(b,3), (¢, 3), (a, }.

Figur 2 zeigt, dass unser neues System zu dem in Figur 1 isomorph ist.

Figur 2
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4.2 Zwei rekursive Konstruktionen

Besonders bekannt ist eine Produktkonstruktion, die gestattet, aus zwei Systemen der
Ordnungen v; und v; ein neues von der Ordnung v, * v, zu konstruieren. H. Werner
bewies einen interessanten Faktorisierungssatz beziiglich dieser Produktbildung, nach
dem die Zerlegung eines STS (v) in Faktoren (bis auf Isomorphie der Faktoren und
bis auf deren Ordnung) eindeutig ist. Wir verzichten hier absichtlich auf dieses
gingige Verfahren. Auch die elegante Hilfsmatrizenmethode von H. Lenz und viele
andere Methoden (Verdreifachung, mit Transversaldesign, Perturbationstrick, ...) wer-
den unterdriickt. Statt dessen teilen wir zwei, besonders stark anschaulich geometrisch
motivierte Verfahren mit.

Von STS (v) nach STS Qv +1)
Das Zentralverfahren (T. Skolem)

Gegeben sei ein Steiner Tripelsystem S; der Ordnung v mit der Punktmenge V; =
{1,2,...,v}. Wir denken uns S, als Grundflache einer Pyramide mit Spitze Z. Auf
jeder Verbindungsgeraden von Z mit einem Punkt i € V) gibt es einen weiteren Punkt
i’. So erhalten wir die Menge V aller Punkte des neuen Systems V=V, u {l’,2/, ...,
i’} U {Z}. Neben den Geraden aus S| nehmen wir {i, i’, Z} mit i € V; dazu und weiter
zu jeder Geraden {i,J, k} aus S die drei Geraden {i,/’, k'}, {¢,j’, k}, {i’,J, k’}. Die
Punkte i, j, k,i’,j’, k', Z bilden dann ein STS (7), eine projektive Ebene der Ord-
nung 2. Besonders suggestiv ist es, sich das System S, einfach ,,hochgezogen* zu den-
ken.

Beispiel:
Startsystem Sy = STS (7) aus Figur 1.

Punkte: V'={1,2,3,4,5,6,7,2,1,2,3,4,5,6’,7}.

Geraden:
{1,2,3}, {1,4,7}, {1,5,6}, {2, ,7}, {2,4,6}, {3,6,7}, {3,4,5},
,1,2}, {2,2,2}, {3,3,2}, {4,4,2}, {5,5,2}, {6,6',2}, {1,7",Z},
{1, 2, 3}, {1, ,7'}, {1, 5,6}, {2, 5,7}, {2, 4,67}, {12, 3}, {I',4, 7'},
{r,s, 6}, {2,5, 7}, {2, 4, 6}, {l, 2’ 3, {1, 4,7}, {1,5,6}, {2,5,7},
(2,4, 6}, {3, 6’ 73, {3, 4,5, {3,6, 7'}, {3,4, 5}, {3,6,7}, {3/,4,5}.

Das Polygonverfahren (T. P. Kirkman)

Wie gehabt, starten wir wieder mit einem S; = STS (v). Dann nehmen wir zu seinen
Punkten V; die Punkte Z,1’, 2/, . " und zu seinen Geraden auch wieder die Ge-
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Figur 3

Figur 4

raden {i,i’, Z} mit i € V| dazu. Allerdings wihlen wir jetzt eine vollig andere geo-
metrische Interpretation. Die neuen Punkte sollen — wie Figur 4 im Falle v = 7 zeigt —
Ecken eines reguldaren Polygons (mit Mittelpunkt M) sein.

Nun ordnen wir dem Punkt1 die Endpunkte der zu (M, 1’) senkrechten Sehnen
2,7, (3,6, (4,5) zu und erhalten auf diese Weise drei neue Geraden {1, 2’, 7'},
{1,3,6}, {1,4’,5}. Entsprechend verfahren wir mit den iibrigen Punkten aus V;. Dies
ergibt:

{2,103}, (3,2,44, {4,3.5}, {54,614, {6,5,7}, {7,167,
2,4,7, 3,15} {4,2,67, {53,7}, {6 1,4}, {1,2,5},
(2,5,6%, {3,6,7}, (4,17}, {512}, {6,2,3}, {7,3,4}.

Ein Vergleich der beiden Verfahren zeigt, dass wir zwei nicht-isomorphe Systeme der
Ordnung 1+ 2v erhalten haben. Nicht-Isomorphiebeweise gestalten sich meist recht
schwierig. Wie soll man schon feststellen, dass es keinen Isomorphismus gibt?
Bedeutet das nicht uferloses Herumprobieren?
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5. Isomorphie

Wieviele paarweise nicht-isomorphe STS (v) gibt es bei gegebener Ordnung v? Wir be-
zeichnen diese Anzahl mit N (v).

Was weiss man?

v N (v)
7 1
9 1
13 2 V. de Pasquale 1899
15 80 F. N. Cole, L. D. Cummings, H. S. White 1917
19 = 284 407
21 = 2160980 ; R. A. Mathon, K. T. Phelps, A. Rosa 1983
25 = 10"

Im Jahre 1974 fand R. M. Wilson die folgende Abschitzungsformel

2
—(nv-35 —In
612( )éN(v)éeZ .

Diese Formel gilt zwar fiir alle v € STS, fiir kleine Werte von v ist sie aber schlecht.
So ergibt sich z.B. mit der Wilson-Formel nur N (19) = 8894. (Die Abschitzung be-
sagt grob, dass N (v) von der Grossenordnung v*** mit «>0 ist.) Nach dem Beweis
der van der Waerden-Vermutung im Jahre 1980 durch den russischen Mathematiker
G. P. Egoritschev konnte der Faktor 12 der linken Seite der Ungleichung durch 6 er-
setzt werden. Es kann extrem schwierig sein, von zwei gegebenen Steiner Tripelsyste-
men gleicher Ordnung zu entscheiden, ob sie isomorph sind oder nicht.

6. Automorphismen

Eine Frau wird erst schon durch die Liebe, eine Struktur durch die Automorphismen.
Es gibt auch hierbei noch viel zu tun, es bleiben viele Probleme offen.

6.1 Gegeben: Einzelne Permutationen

Gegeben sei eine einzelne Permutation o auf einer Menge ¥V mit | V| =v € STS.

Fiir welche v € STS gibt es Systeme STS (v) = S, (v) so, dass o Automorphismus ist?

Zu dieser Frage gibt es viele interessante Antworten. Wir zdhlen nur einige davon auf.

6.1.1 Wenn « ein Zykel der Lange v ist, dann gibt es solche Systeme S, (v) fiir alle
v € STS, ausser v =9 (R. Peltesohn).
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6.1.2 Wenn o genau einen Fixpunkt besitzt und auf den iibrigen Punkten ein Zykel
der Lange v —1 ist (dann heisst « auch 1-rotational), so gibt es solche Systeme S, (v)
genau dann, wennv =9, 27 + 24 n mit n € N, (A. Rosa).

6.1.3 Wenn o eine Involution («x zweimal nacheinander angewandt ergibt die iden-
tische Abbildung) ist und genau einen Fixpunkt besitzt, dann gibt es solche Systeme

Sy (v) genau dann, wenn v =9, 19, 25, 27 + 24 n mit n € N, (A. Rosa, J. Doyen, L.
Teirlinck).

Der folgende Satz geht weit iiber all diese Einzelergebnisse hinaus.

6.2 Gegeben: Gruppe

Zu jeder endlichen abstrakten Gruppe G gibt es ein STS (v), dessen Automorphismen-
gruppe G ist. Dabei gilt v = |G |¢1 €1,

Noch im Jahre 1973 musste man sich auf eine entsprechende Aussage fiir unvollstian-
dige (4 = 1) Steiner Tripelsysteme beschrianken. Erst im Jahre 1978 gelang F. Mendel-
sohn mit Methoden der universellen Algebra ein Beweis. Unschon bleibt die merk-
wiirdige Abschitzung fiir v. Leider handelt es sich nur um einen Existenzbeweis. Die
explizite Bestimmung der Automorphismengruppe eines vorgegebenen Systems
STS (v) ist im allgemeinen sehr schwierig.

Man kann beweisen, dass es zu jedem gegebenen System ST7S (v) mit v € STS eine
Gruppe von scharf 1-transitiven Automorphismen gibt. Das muss nicht die volle
Automorphismengruppe sein. (Dabei heisst scharf 1-transitiv, dass es zu zwei
gegebenen, verschiedenen Punkten X, y € V stets genau einen Automorphismus gibt,
der x auf y abbildet.)

6.3 Die Sdtze von M. Hall
Aus der Fiille weiterer Ergebnisse greifen wir lediglich noch drei heraus (M. Hall).

6.3.1 Fiir jeden Punkt eines STS (v) gebe es eine Involution mit genau diesem Punkt
als Fixpunkt. Dann erzeugt jedes Dreieck (drei Punkte nicht auf einer Geraden) in
unserem ST'S (v) ein STS (9). Es gilt auch die Umkehrung.

6.3.2 Fiir jede Gerade eines STS (v) gebe es eine Involution mit genau den Punkten
dieser Geraden als Fixpunkten. Dann erzeugt jedes Dreieck in unserem STS (v) ent-
weder ein STS (9) oder aber ein ST'S (7). Die Umkehrung gilt nicht.

6.3.3 Zu STS (v) gebe es eine Automorphismengruppe, die auf den Dreiecken tran-
sitiv operiert. Dann ist STS (v) entweder vom Typ 1 oder vom Typ 2.

Typ 1: Jedes Dreieck in unserem ST'S (v) erzeugt ein ST'S (7) (das sind die projektiven
Raume der Ordnung 2).
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Typ 2: Jedes Dreieck in unserem ST (v) erzeugt ein STS (9) (das sind nicht unbe-
dingt die affinen Rdume der Ordnung 3).

7. Ableitungen
7.1 Ableitung eines Steinersystems?

Ein Steinersystem S (¢, k, v) habe die Punktmenge V und die Geradenmenge B. Wir
greifen einen Punkt x heraus, und betrachten alle Geraden durch ihn. Dann bilden
die Punktmenge V' = P\ {x} und die genannte Geradenmenge

B’'={b\{x}|be B und x e b}
ein Steinersystem S (¢ — 1, Kk — 1, v — 1). Man spricht von der Ableitung des Systems
S (¢, k, v) im Punkt x.
7.2 Probleme und Losungen

7.2.1 Gegeben:v € STS
Fiir welche v € STS gibt es abgeleitete STS (v)?

Notwendige und hinreichende Bedingung fiir die Existenz von SQS (v) ist v =8, 10 +
6 n, n € Ny. Daraus folgt bereits, dass es fiir alle v € STS abgeleitete Systeme ST'S (v)
gibt.

7.2.2 Gegeben: STS (v)
Ist jedes STS (v) Ableitung eines SQS (v)?

Fiir v < 13 1st diese Frage seit langer Zeit positiv beantwortet, fiir » = 13 erst seit 1972.
Und wie steht es mit den 80 Systemen S7S(15)? Im Jahre 1980 wusste man, dass
43 Systeme dieser Art abgeleitet sind, 1984 waren es schon 68. Ein Jahr spéter zeigten
dann J. Diener, E. Schmitt, H. L. de Vries mit Computereinsatz, dass jedes der 80 Sy-
steme Ableitung eines geeigneten Quadrupelsystems ist. Weitere explizite Aussagen
tiber kleine Werte von v liegen nicht vor.

7.2.3 Allgemeinere Aussagen

K. T. Phelps fand einige allgemeinere Sitze. So konnte er etwa zeigen, dass ein
STS (1+ 2v), das entweder ein abgeleitetes Untersystem der Ordnung v besitzt oder
aber ein ,,Untersystem* der Ordnung v mit einem ,,fehlenden* Tripel, dann selber ab-
geleitet ist.

7.3 Und nochmals eine Verallgemeinerung !

Welche STS (v) sind s-fache Ableitungen von S (2 + 5,3+ s, v+ 5)? Dabei gilt s € N.
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Die Frage ist in dieser Allgemeinheit nicht beantwortet. Wohl aber liegen einzelne
Beispiele vor.

Dreifache Ableitung der in Abschnitt 1.3 angegebenen Systeme S (5,6, n) liefert
S (2, 3, n — 3), also Steiner Tripelsysteme ST'S (n — 3) fiir n € {12, 24, 48, 72, 84}.

Bemerkung:

Die beiden als Witt-Design bekannten Systeme S (5, 6,12) und S (5, 8, 24) ergeben
die Ableitungen S (4, 5,11), S (4,7, 23), S(3,6,22), S(2, 5, 21). Diese 6 Systeme sind
besonders bedeutungsvoll, da es sich bei den zugehorigen Automorphismengruppen
um die sogenannten Mathieugruppen — das sind spezielle einfache Gruppen — han-
delt. Die Kardinalitit dieser Gruppen ist bekannt, auch iiber die Transitivitiat weiss
man Bescheid. So ist etwa die Automorphismengruppe von S (5, 6, 12) die einzige
scharf 5-transitive Gruppe. Sie besitzt die Kardinalitit 26+ 3%- 511 (Mathieu).

8. Auflésbare Systeme
8.1 Die Schulmddchengeschichte

Der Figur 1 entnehmen wir fiir das ST'S (9) die Existenz einer ,,Parallelenschar, nim-
lich {1, 2, 3}, {4, 5, 6}, {7, 8, 9}. Dabei stellt eine Menge von Geraden eine ,,Parallelen-
schar® (oder auch einen 1-Faktor) dar, wenn durch jeden Punkt aus V genau eine Ge-
rade der Schar geht und keine zwei Geraden der Schar einen Punkt gemeinsam
haben. Noch mehr! Wir finden in Figur 1 drei weitere ,,Parallelenscharen®: {1, 4, 7},
{2,5,8}, {3,6,9}; {1,5,9}, {3,4,8}, {2,6,7}; {3,5,7}, {2,4,9}, {1,6,8}. Jetzt ist die
Menge B aller Geraden in vier ,,Parallelenscharen” so eingeteilt (partitioniert), dass
jede Gerade in genau einer Schar liegt. Wir sprechen von einem ,,Parallelismus* (oder
auch von einer 1-Faktorisierung) und nennen das System ST (v) jetzt auflosbar.

Und hier eine Prognose: Falls ein System STS (v) auflosbar sein soll, muss jede ,,Par-
allelenschar* notwendig genau —;-v Geraden enthalten und es muss genau b: %v=
—;_— (v—1) ,,Parallelenscharen‘ geben.

Ein Beispiel eines in dieser Weise auflosbaren Systems liefert das bekannte Schul-
miadchenproblem von T. P. Kirkman aus dem Jahre 1850: 15 Schulméadchen machen
an jedem der 7 Tage einer Woche einen Spaziergang. Sie bilden dabei stets Reihen
zu je drei. Liasst es sich so einrichten, dass keine zwei Madchen zweimal miteinander
gehen?

Hier ist eine Losung:

Sa {1,7,14)
So {1,12,13}

2,4, 10}
2,3,6)

3,511} {6, 13,15} {8,9, 12}
4,58 {1,915}

Mo {1,2,5) {3,14,15} {4,6,12} {7,8,11} {9,10,13)
Di {1,3,9) {2,8,15) {4,11,13} {5,12,14} {6, 7,10}
Mi {1,415} {2,911} {3,10,12} {5,7, 13} {6,8, 14}
Do {1,6,11} {2,7,12} {3,8,13} {4,9,14} {5, 10,15}
Fr {1,8,10} {2,13,14} {3,4,7} {5,6,9} ({11, 12,15}
{ { {
{ { {

10, 11, 14}
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Dabei wurden die Middchen mit den natiirlichen Zahlen von 1 bis 15 bezeichnet.
Jede Zeile stellt eine ,,Parallelenschar dar. Jede Gerade kommt in genau einer Schar
vor. Wir haben ein auflosbares ST'S (15).

8.2 Gegeben:v € STS

Fiir welche Ordnungen v € STS gibt es auflésbare Systeme STS (v)?

Im Jahre 1971 bewiesen R. M. Wilson und D. K. Ray-Chaudhuri, dass genau fiir alle
Ordnungen v =9 + 6 n, n € Ny, auflosbare Steiner Tripelsysteme existieren. Die Ent-
scheidung, ob ein vorgegebenes System S7S (v) mit v =9 + 6 n, n € Ny, auflésbar ist,
und die explizite Bestimmung des ,,Parallelismus* kann sehr schwierig sein. Wieviele
verschiedene Auflésungen existieren jeweils?

9. Die Sache mit den Untersystemen

9.1 Untersystem?

Ein STS (w) mit der Punktmenge W und der Geradenmenge G heisst Untersystem
des Systems STS (v) mit der Punktmenge ¥ und der Geradenmenge B, wenn W< V
und G < B.

9.2 Problem

Seienv,w € STS undv > w. Gibt es ein STS (v) mit einem Untersystem STS (w)?

Die Antwort lautet ja, sofern die Bedingung w = -%— (v—1) erfiillt ist. Ein erster Beweis
dieses Satzes wurde 1973 von J. Doyen — R. M. Wilson, ein weiterer, wesentlich ver-
einfachter 1979 von G. Stern — H. Lenz gegeben.

Ist statt v, w € STS ein System STS (v) gegeben, so kann die explizite Bestimmung
moglicher (etwa aller maximalen) Untersysteme sehr schwierig sein.

10. Weitere Definitionen — weitere Probleme

10.1 Definition: Disjunkte STS (v)

Zwei STS (v) iiber derselben Punktmenge V heissen disjunkt, wenn sie keine Ge-
rade gemeinsam haben.
Sind By, B, die zugehoérigen Geradenmengen, so gilt also |B; n B, | =0.

10.2 Problem

Wie gross ist bei gegebener Ordnung v € STS die Maximalzahl D (v)
paarweise disjunkter STS (v)?
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Schon T. P. Kirkman wusste D (7) =2, D (9) =7. Inzwischen fand H. F. Denniston
noch D (13) =11. Von einigen Teilergebnissen L. Teirlincks abgesehen ist nichts be-
kannt.

10.3 Erweiterung: Fast disjunkte STS (v)

Zwel STS (v) iiber derselben Punktmenge V heissen fast disjunkt, wenn sie m e N
Geraden gemeinsam haben. Es gilt also | B; N By | = m.

10.4 Problem

Die Menge J (v) aller bei gegebenem v vorkommenden Werte m wurde von C. C.
Lindner und A. Rosa 1975 vollstindig bestimmt.

P. Miiller beschiftigt sich mit einer solchen Mengenbestimmung fiir den Fall, dass die
paarweise disjunkten STS (v) auch noch isomorph sind.

10.5 Erweiterung: Orthogonale STS (v)

Gegeben sind zwei disjunkte Steiner Tripelsysteme S; und S,. Wenn zwei Punkte-
paare (x, y), (u,v) in S} zwei sich schneidende, in S, aber zwei sich nicht schneidende
Geraden bestimmen, dann heissen S} und S, orthogonal.

Das bedeutet {x, y, a}, {u,v,a} € By mit a € V und weiter {x, y, b}, {u,v, ¢} € B, mit
b,ceV, b+ c.

Fir unendlich viele Werte v = 7 + 6 n mit n € Ny konnten Paare orthogonaler ST'S (v)
konstruiert werden. Im Falle v =9 existiert so etwas iiberhaupt nicht, wihrend
A. Rosa orthogonale ST'S (27) angegeben hat. Mehr weiss man nicht.

Wie schon bei den in 4.2 angegebenen zwei Konstruktionsverfahren verwendet man
fiir die Untersuchung von Steinersystemen in zunehmendem Masse geometrische Ver-
anschaulichungen. Ja, es werden sogar geometrische Begriffe definiert. Wir geben hier
zwel Beispiele solcher Begriffe, namlich den des Ovals und den der Dimension.

11. Spezielle Punktmengen in ST (v)

11.1 Verschiedene Definitionen

Sei M < V eine nichtleere Punktmenge. Wir sprechen dann von

— Bogen, wenn fiiralleg e Bgilt M ng| € {0, 1,2},

— Vollstindigem Bogen, wenn M ein nicht in einem Bogen grosserer Méchtigkeit ent-

haltener Bogen ist,
— Blockierender Menge, wenn fiir alle g € B gilt [ M ng| € {1, 2},
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— Oval, wenn M ein Bogen ist und in jedem seiner Punkte genau eine Tangente exi-
stiert,

— Knotenoval, wenn M ein Oval ist, dessen Tangenten sich in genau einem Punkt
(dem Knoten) schneiden,

— Reguldrem Oval, wenn M ein Oval ist und in jedem Tangentenpunkt, der nicht auf
M liegt, genau zwei Tangenten existieren.

11.2 Probleme zu Bégen

Wie gross ist die maximale bzw. die minimale Kardinalitit €. (V) bzw. €min (v) voll-
standiger Bogen in STS (v)?

Was weiss man?

€max (V) = —;— (v +1) genau dann, wenn v € HSTS, und en,y (v) = —;— (v —1) genau dann,
wenn v € RSTS. Dabei ist HSTS die Menge aller Steinerzahlen v=7,15+ 12 n,
n € Nog, und RSTS die Menge aller iibrigen Steinerzahlen, also v=09,13+ 12 n,
ne No.

Fiir die minimale Kardinalitdt kennt man neben einigen Werten fiir kleine Ordnungen
lediglich die Abschitzung emi, (v) = [J2v].

11.3 Und die blockierenden Mengen?

In Steiner Tripelsystemen STS (v) gibt es keine blockierenden Mengen.

11.4 Ovalprobleme
11.4.1 Wie steht es mit der Existenz?

Gibt es Steiner Tripelsysteme STS (v) mit Knotenovalen
und solche mit reguliren Ovalen?

Diese Frage wurde im Prinzip beantwortet (H. Lenz, H. Zeitler). Genau fiir alle
v € HSTS (bzw. fiir alle v € RSTS) existieren STS (v) mit Knotenovalen (bzw. mit
reguliren Ovalen). Damit sind die beiden Mengen HSTS und RSTS von Steiner-
zahlen geometrisch charakterisiert. Auch iiber die Anzahl von Knotenovalen bzw. re-
guldren Ovalen und eine entsprechende weitere Klassifizierung von Steinerzahlen gibt
es bereits einige Teilresultate.

11.4.2 Und andere Ovale?

Gibt es Steiner Tripelsysteme STS (v) mit anderen — von den Knotenovalen
und den reguliren Ovalen verschiedenen — Ovalen?
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Es wurden inzwischen einige weitere Ovaltypen gefunden (H. Zeitler). Ovale also mit
vollig andersartigen Tangentenkonfigurationen. Eine allgemeine Ovaltheorie aber
fehlt — obwohl sie sehr wiinschenswert ist (brauchbar vor allem zur Erleichterung der
schwierigen Nicht-Isomorphieuntersuchungen).

12. Dimension bei S7S (v) — gibt es das?

12.1 Definition

Seien Vy, V,,..., V,c V die samtlichen Erzeugendenmengen von V (jede solche
Menge V; ,spannt” V auf), dann heisst d=min {|V;| -1}, i € {1, ..., n} die Dimen-
sion d von STS (v).

12.2 Probleme

Gibt es STS (v) mit Dimension d € N? Was ldsst sich iiber die Dimension eines vor-
liegenden STS (v) sagen und was iiber die Verdnderung der Dimension bei Anwendung
rekursiver Verfahren?

d=2

Wenn jedes Dreieck das betreffende System aufspannt, spricht man von einem nicht-
entarteten zweidimensionalen ST7S (v). Spannt ein Dreieck das System auf, ein
anderes aber nicht, so haben wir ein entartetes zweidimensionales System.

J. Doyen konnte 1969/70 beweisen, dass fiir alle Steinerzahlen v nichtentartete und fiir
alle Steinerzahlen v = 15 auch entartete zweidimensionale ST'S (v) existieren.

d=3

Dreidimensionale STS (v) gibt es fiir v € {15, 27, 31, 39} und fiir alle Steinerzahlen
v = 45, ausgenommen moglicherweise (!) v € {51, 67, 69, 145}.

Daneben finden sich nur kleinere Teilresultate. So bleibt bei Anwendung des Zentral-
verfahrens die Dimension unverdndert oder sie wichst genau um 1, wiahrend das
Polygonverfahren die Dimension stets auf 2 reduziert (Zeitler).

13. War das schon alles?

Mit diesem doch recht umfangreich geratenen Bericht {iber Tripelsysteme ist das
Thema noch lange nicht ausgeschopft. Hier stichwortartig einige weitere Themen-
bereiche:

Planare, unvollstindige, zyklische, 2-fache, ... Systeme; vielfaltige Verbindungen zur
Graphentheorie (chromatische Zahl, chromatischer Index, Ketten (trains), vollstén-
dige Ketten, ...); Moglichkeiten des Computereinsatzes; ...
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Wir verzichten notgedrungen auf weitere Darstellungen und auch auf spezielle Lite-
raturangaben. Statt dessen nennen wir lediglich einige Ubersichtswerke. Sollte ein
Leser noch nicht vollig verschreckt sein (hoffentlich gibt es solche!) und gar den
Wunsch haben, noch mehr zu erfahren, so sei er auf die ausfiihrliche Bibliographie
zur Designtheorie in [3] verwiesen (sie wurde inzwischen auf iiber 1000 Titel erwei-
tert!). Dort kann er unter den im vorliegenden Text angegebenen Autorennamen ge-
naue Literaturhinweise finden und dann mit dem Studium dieses hochaktuellen, aber
auch Ausserst interessanten Gebietes beginnen. Viel Vergniigen und viel Erfolg!

H. Zeitler, Math. Institut, Universitdt Bayreuth
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Periodicity of p-adic continued fractions

A well known theorem of Lagrange states that the simple continued fraction expansion
of a real number is periodic if and only if that real number is quadratic irrational. Several
authors have tried to establish analogous results for continued fractions of p-adic num-
bers. The present author [3] showed that such a result is possible if one starts with
sequences of approximation lattices of p-adic numbers, instead of continued fractions. We
note that from a periodic sequence of approximation lattices of a p-adic number ¢ it is
easy to construct a periodic continued fraction expansion of £.

This process of constructing the continued fraction such that it is periodic, is the reverse
of the process in the real case, where one starts by defining the continued fraction, and
then tries to prove its periodicity. It would be interesting to obtain periodicity results for
a given p-adic continued fraction expansion method, e.g. that introduced by Schneider [2].
Bundschuh [1] remarks that for this type of p-adic continued fractions a periodic con-
tinued fraction represents either a rational p-adic number of special type, or a quadratic
irrational p-adic number (analogous to Euler’s theorem). Further, he gives some numeri-
cal evidence indicating that the converse (analogous to Lagrange’s theorem) may not be
true.

It is the purpose of this note to show that for Schneider’s continued fraction algorithm
for p-adic numbers, it may indeed happen that quadratic irrational numbers in @, have
non-periodic continued fraction expansions. Thus for this type of continued fractions an
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