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ELEMENTE DER MATHEMATIK
Revue de mathematiques elementaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

El Math Vol 43 Nr 4 Seiten 97-128 Basel, Juli 1988

Klassisches und Modernes über Steiner Tripelsysteme

Ziel der vorliegenden Arbeit ist es, Probleme (es gibt deren sehr viele) und Entwicklungen

innerhalb der Blockplantheone, speziell der Steiner Tripelsysteme, zu skizzieren

Es soll also lediglich ein Überblick vermittelt werden Dies bedeutet, Verzicht auf
Details, Verzicht auf Beweise An Hand von Resultaten wird versucht, einzelne Ent-
wicklungshnien aufzuzeigen

1. Steiner Tripelsysteme - was ist das?

Die im folgenden definierten Begriffe sind weltweit üblich, nicht aber die Bezeichnungen

Einheitlichkeit wäre hier wünschenswert1

1 1 t-Blockplane Sx (t, k, v)

Gegeben sei eine Menge V mit | V\ =i Elementen, den Punkten In ihr weiter eine
Menge B von fc-elementigen Teilmengen, den Blocken oder Geraden Dabei gelte
k __.

2 und i > k Schliesslich sollen durch t Punkte (1 _§_;_£ ft) genau leN Blocke
gehen Dann sprechen wir von einem r-Blockplan (r-Design) und schreiben Sx (t, k, v)
Fur diese Strukturen lassen sich Satze beweisen Wir geben einige von ihnen an

k\

Durch s Punkte (1 __i s __» t) gehen genau rs Geraden

v-s
t-s

C:.1
k,

bk irx und rx (k - 1) (v - 1) r2,

b ___ r (Ungleichung von R A Fisher)
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1 2 Blockplane Taktische Konfigurationen

2-Blockplane Sk(2,k,v) werden als Blockplane und Inzidenzstrukturen Sr(l, k, v),
also 1-Blockplane, als taktische Konfigurationen bezeichnet

1 3 Steiner Systeme

Im Falle k 1 sprechen wir von Steiner Systemen und schreiben dann kurz S (t, k9 v)

t>3
Von dieser Art kennt man bis heute nur die folgenden Systeme

S(5,6,n) und S (4, 5, n-l) mit n e {12, 24,48, 72, 84},

5(5,8,24) und 5(4,7,23),
5(5,7,28) und 5(4,6,27)

(E Witt, R D Carmichael, W H Mills, R H F Denniston)
Die Systeme 5(5,6, 12) und 5(5,8,24) werden oft als Witt-Designs bezeichnet Es

handelt sich um wahre Kleinodien der Blockplantheone
Nach dem Gesagten ist die zentrale Frage nach der Existenz von 5 (t, k, v) mit / ___ 6

unbeantwortet

t 3, also 5 (3, k, v)

Dazu gehören die Mobius-Raume MG(d9q) und die Steiner Quadrupelsysteme
5 (3,4, v) SQS (v) (A Hartmann, C C Lindner, W Neidhardt, A Rosa)

t 2, also 5 (2, k9 v)

Von besonderem Interesse sind hier die endlichen projektiven Räume PG (d, q) und
die endlichen affinen Räume AG (d, q) Im Falle k 3 haben wir es mit den Steiner
Tnpelsystemen zu tun, 5 (2, 3, v) STS (v) Sie werden uns hier m besonderem Masse

beschäftigen Deshalb geben wir zwei Beispiele an Einmal die projektive Ebene
PG (2,2) der Ordnung 2 und dann die affine Ebene AG (2, 3) der Ordnung 3 Im
ersten Fall handelt es sich um ein STS (1), im zweiten um em STS (9) (Figur 1)

PG (2,2) - STS (7)
Figur 1

AG (2, 3) STS (9)



El Math Vol 43 1988 99

2. Wo gibt es f-Blockpläne, wo braucht man sie?

21 Etwas Historie Jakob Steiner (1796- 1863)

J Steiner — der bekannte Schweizer Geometer — entdeckte, dass die 9 (bzw 28)

Wendepunkte einer Kurve dritter (bzw vierter) Ordnung zu je 3 (bzw 4) auf einer
Geraden liegen Diese Punkte bilden dann ein STS (9) (bzw SQS (28)) Seine
diesbezüglichen Entdeckungen waren von weitreichender Bedeutung sowohl fur die
Funktionentheorie (abelsche Funktionen) als auch fur die Algebra (Gleichungen 28 Grades)

2 2 Und die Physik?

Im Bereich der Physik sollen Blockplane bei der Beschreibung der Geometrie des

Atomkerns, aber auch bei der „Haufenbildung" (Cluster) in Korpuskularstrahlen eine
wesentliche Rolle spielen

2 3 Kodierungstheorie - ein sehr modernes Thema

Die Kodierungstheorie ist eine Disziplin, die sich erst m den letzten Jahrzehnten
entwickelt hat Auch dabei treten wieder ,-Blockplane auf So induziert etwa
jeder 2-Blockplan Sx (2, k, v) einen /-fehlererkennenden Kode der Wortlange ft mit

/___ 2 (rx — X) — 1 und einen /-fehlerkorrigierenden Kode der Wortlange ft mit
f^rx — k — j Von ganz besonderer Bedeutung fur die Kodierungstheorie sind die
bereits erwähnten Systeme 5 (4, 7, 23) und 5 (5, 8, 24) Sie hangen eng mit dem
binaren Golay-Kode zusammen

2 4 Aufstellung von Versuchsplanen

Zwei Beispiele sollen diese Art Anwendung der Blockplantheone verdeutlichen An
einem Schachturnier sind v Personen beteiligt Jeder Spieler hat r Partien zu spielen
Gesamtzahl aller Partien? Hinweis Sr (1, 2, v)

i verschiedene Arzneimittel sollen getestet werden Jedes dieser Medikamente wird
von r Personen getestet und jede Versuchsperson testet k Medikamente Anzahl der

Testpersonen? Hinweis Sr (1, k, v) Die beiden Beispiele erscheinen recht künstlich, ja
kurios Doch Überlegungen dieser Art werden bei der Planung statistischer Experimente,

bei der Gewinnmaximierung gewisser Spiele (Lottosysteme) oder bei der

Organisation von Fernsprechverteilern tatsachlich und sogar häufig angewendet (R A
Fisher, D Raghavarao)
Selbstverständlich finden sich Probleme dieser Art besonders zahlreich im Bereich

der Unterhaltungsliteratur
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2.5 Eine verrückte Anwendung

Es ist kaum zu glauben! Aber Blockplantheorie lässt sich sogar zur Lösung von
Problemen aus der Geometrie verwenden.
So kann man etwa mit dem schon erwähnten Steinersystem 5 (5, 8, 24) (über das

Leech-Gitter) ausgerechnet im 24-dimensionalen euklidischen Raum eine „gute"
Kugelpackung konstruieren (N. J. A. Sloane). Dies überrascht um so mehr, als
Probleme dieser Art im Dreidimensionalen noch nicht abschliessend gelöst sind.
Im folgenden beschränken wir uns auf Steiner Tripelsysteme 575 (v). Sie sind im
Vergleich zu allgemeineren /-Blockplänen relativ einfach, stellen aber trotzdem eine
äusserst interessante und reichhaltige Struktur dar.

3. Folklore: Die Existenzbedingungen für STS(v)

Schon Reverend Thomas Penyngton Kirkman (1806-1895) stellte fest, dass STS(v)
genau dann existieren, wenn v 7,9 + 6 n mit «eN0. Die Menge dieser „zulässigen"
Zahlen, der sogenannten Steinerzahlen, bezeichnen wir mit STS. Auf die Trivialfälle
v l9 v 3 wird verzichtet. Dass diese Bedingung notwendig ist, folgt aus den in
Abschnitt 1 für r-Blockpläne ganz allgemein angegebenen Formeln. Will man umgekehrt
beweisen, dass für alle v e STS wirklich STS (v) existieren, so bedarf dies genauer
Konstruktionsanweisungen. Damit sind wir bei dem wichtigsten Thema, den
Konstruktionen.

4. Und wie konstruiert man STS (v)

Es ist eine grosse Zahl von verschiedenartigsten Konstruktionsverfahren entwickelt
worden. Besonderen Einfallsreichtum bewiesen dabei R. C. Böse und H. Hanani. Wir
unterscheiden direkte und rekursive Konstruktionen und beschränken uns darauf,
einige Beispiele zu skizzieren.

4.1 Eine direkte Konstruktion

Gegeben sei eine endliche multiphkative Gruppe G ungerader Ordnung l + 2n,
n e N. Als Punkte eines Systems STS (3 + 6 n) wählen wir die Elemente der Menge
V= G x {1,2, 3} und als Geraden die folgenden Teilmengen von V:

{(x91), (x, 2), (x, 3)} für alle xeG9

{(x9l)9(y9l)9(z92)}9 {(x92)9(y92)9(z93)}9

{(x9 3), (y9 3), (z, 1)} für alle x9y eG mit x ¥= y und x y z2.

Zwei so konstruierte Systeme STS (3 + 6n) sind genau dann isomorph, wenn dies für
die verwendeten Gruppen gilt. Die Konstruktion ist insoferne typisch, als sie rein
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kombinatorischen Charakter hat. Ohne Motivation fällt ein Verfahren vom Himmel.
Wunderbarerweise zeigt sich, dass alles stimmt.

Beispiel:

G {a, ft, c] sei die zyklische Gruppe der Ordnung 3. Wir geben die Multiphkationstafel

an. Es gilt a2 a,b2 c und c2 ft.

a b c

a a b c

b ft c a

c c a b

Punkte:

V= {(a, 1), (ft, 1), (c, 1), (a, 2), (ft, 2), (c, 2), (a, 3), (ft, 3), (c, 3)}

Geraden:

{(a,l),(a,2),(a,3)}, {(ft, 1), (ft, 2), (ft, 3)}, {(c, 1), (c, 2), (c, 3)},

{(a,l),(b, l),(c,2)}, {(a,l),(c,l),(ft,2)}, {(ft, 1), (c, 1), (a, 2)},

{(a,2),(b,2),(c,3)}, {(a,2),(c,2),(b,3)}, {(b,2),(c,2),(a,3)},

{(a,3),(b,3),(c,l)}, {(a,3),(c,3),(b,l)}, {(ft, 3), (c, 3), (a, 1)}.

Figur 2 zeigt, dass unser neues System zu dem in Figur 1 isomorph ist.

(a,3)

(c,3)
(c,l)

Figur 2
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4.2 Zwei rekursive Konstruktionen

Besonders bekannt ist eine Produktkonstruktion, die gestattet, aus zwei Systemen der
Ordnungen vx und v2 ein neues von der Ordnung vx- v2 zu konstruieren. H. Werner
bewies einen interessanten Faktorisierungssatz bezüglich dieser Produktbildung, nach
dem die Zerlegung eines STS (v) in Faktoren (bis auf Isomorphie der Faktoren und
bis auf deren Ordnung) eindeutig ist. Wir verzichten hier absichtlich auf dieses

gängige Verfahren. Auch die elegante Hilfsmatrizenmethode von H. Lenz und viele
andere Methoden (Verdreifachung, mit Transversaldesign, Perturbationstrick,...) werden

unterdrückt. Statt dessen teilen wir zwei, besonders stark anschaulich geometrisch
motivierte Verfahren mit.

Von STS (v) nach STS (2 *; + 1)

Das Zentralverfahren (T. Skolem)

Gegeben sei ein Steiner Tripelsystem Sx der Ordnung v mit der Punktmenge Vx

{1,2, ...,v). Wir denken uns Sx als Grundfläche einer Pyramide mit Spitze Z. Auf
jeder Verbindungsgeraden von Z mit einem Punkt i e Vx gibt es einen weiteren Punkt
/'. So erhalten wir die Menge Faller Punkte des neuen Systems V= Vx u {V, 2',
/'} u {Z}. Neben den Geraden aus Sx nehmen wir {/, /', Z} mit i e Vx dazu und weiter
zu jeder Geraden {i,j,k] aus Sx die drei Geraden {/,/, k'}, {i',j',k}, {i',j,k'}. Die
Punkte i,j,k,i'9j'9 k',Z bilden dann ein STS (7), eine projektive Ebene der
Ordnung 2. Besonders suggestiv ist es, sich das System Sx einfach „hochgezogen" zu denken.

Beispiel:

Startsystem Sx STS (7) aus Figur 1.

Punkte: V= {1, 2, 3,4, 5, 6, 7, Z, 1', 2', 3', 4', 5', 6', 7}.

Geraden:

{1,2,3}, {1,4,7}, {1,5,6}, {2,5,7}, {2,4,6}, {3,6,7}, {3,4,5},
{1,1', Z}, {2,2',Z}, {3,3',Z}, {4,4',Z}, {5,5',Z}, {6,6',Z}, {7,7',Z},
{1, 2', 3'}, {1, 4', 7}, {1, 5', 6'}, {2, 5', 7'}, {2, 4', 6'}, {l',2, 3'}, {l',4, 7'},

{l',5, 6'}, {2', 5, 7'}, {2'9 4, 6'}, {l',2',3}, {l',4',7}, {l',5',6}, {2'9 5', 7},
{2'9 4'9 6}, {3, 6', 7'}, {3, 4'9 5'}, {3', 6, 7}9 {3', 4, 5'}, {3', 6', 7}, {3', 4', 5}.

Das Polygonverfahren (T. P. Kirkman)

Wie gehabt, starten wir wieder mit einem Sx STS(v). Dann nehmen wir zu seinen
Punkten Vx die Punkte Z, 1', 2', ...,vf und zu seinen Geraden auch wieder die Ge-
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i _ k

Figur 3

• 6

2 3

Figur 4

raden {i, i', Z} mit i e Vx dazu Allerdings wählen wir jetzt eine völlig andere
geometrische Interpretation Die neuen Punkte sollen — wie Figur 4 im Falle v l zeigt —

Ecken eines regulären Polygons (mit Mittelpunkt M) sein
Nun ordnen wir dem Punkt 1 die Endpunkte der zu (M, 1') senkrechten Sehnen

(2', 7'), (3', 6'), (4', 5') zu und erhalten auf diese Weise drei neue Geraden {1,2', 7'},
{1,3', 6'}, {1,4', 5'} Entsprechend verfahren wir mit den übrigen Punkten aus Vx Dies
ergibt

{2,1', 3'}, {3, 2', 4'}, {4, 3', 5'}, {5,4', 6'}, {6, 5', 7'}, {7,1', 6'},

{2,4', 7'}, {3,1', 5'} {4, 2', 6'}, {5, 3', 7'}, {6,1', 4'}, {7, 2', 5'},

{2, 5', 6'}, {3, 6', 7'}, {4,1', 7'}, {5,1', 2'}, {6, 2', 3'}, {7, 3', 4'}

Ein Vergleich der beiden Verfahren zeigt, dass wir zwei nicht-isomorphe Systeme der
Ordnung 1 + 21 erhalten haben Nicht-Isomorphiebeweise gestalten sich meist recht

schwierig Wie soll man schon feststellen, dass es keinen Isomorphismus gibt?
Bedeutet das nicht uferloses Herumprobieren?
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5. Isomorphie

Wieviele paarweise nicht-isomorphe STS (v) gibt es bei gegebener Ordnung v Wir
bezeichnen diese Anzahl mit N(i)

Was weiss man?

1 N(i)

1 1

9 1

13 2 V dePasqualel899
15 80 F N Cole,L D Cummings, H S White 1917

19 !_ 284 407 |
21 i_2160 980 | R A Mathon,K T Phelps, A Rosa 1983

25 i_ IO14 J

Im Jahre 1974 fand R M Wilson die folgende Abschatzungsformel

t2 v\—- (ln i - 5) _ _ x -r- In v

e 12 _i_ _V(t)_se 2

Diese Formel gilt zwar fur alle v e STS, fur kleine Werte von i ist sie aber schlecht
So ergibt sich z B mit der Wilson-Formel nur N(19) 8894 (Die Abschätzung
besagt grob, dass N(v) von der Grössenordnung yat'2 mit a>0 ist) Nach dem Beweis
der van der Waerden-Vermutung im Jahre 1980 durch den russischen Mathematiker
G P Egontschev konnte der Faktor 12 der linken Seite der Ungleichung durch 6

ersetzt werden Es kann extrem schwierig sein, von zwei gegebenen Steiner Tnpelsyste-
men gleicher Ordnung zu entscheiden, ob sie isomorph sind oder nicht

6. Automorphismen

Eine Frau wird erst schon durch die Liebe, eine Struktur durch die Automorphismen
Es gibt auch hierbei noch viel zu tun, es bleiben viele Probleme offen

61 Gegeben Einzelne Permutationen

Gegeben sei eine einzelne Permutation a auf einer Menge Fmit \V\ i e STS

Fur welche i e STS gibt es Systeme STS (v) 5a (v) so, dass ol Automorphismus ist?

Zu dieser Frage gibt es viele interessante Antworten Wir zahlen nur einige davon auf

6 1 1 Wenn a em Zykel der Lange v ist, dann gibt es solche Systeme Sa(v) fur alle

i e STS, ausser i 9 (R Peltesohn)
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6 1 2 Wenn a genau einen Fixpunkt besitzt und auf den übrigen Punkten ein Zykel
der Lange v-l ist (dann heisst a auch 1-rotational), so gibt es solche Systeme Sa(v)
genau dann, wenn v 9, 27 + 24 n mit «gN0(A Rosa)

6 1 3 Wenn ol eine Involution (a zweimal nacheinander angewandt ergibt die
identische Abbildung) ist und genau einen Fixpunkt besitzt, dann gibt es solche Systeme
5a(i>) genau dann, wenn v 9, 19, 25, 27 + 24« mit «eN0(A Rosa, J Doyen, L
Teirhnck)

Der folgende Satz geht weit uber all diese Einzelergebmsse hinaus

6 2 Gegeben Gruppe

Zu jeder endlichen abstrakten Gruppe G gibt es ein STS(i), dessen Automorphismengruppe

G ist Dabei gilt i | G |e'G'

Noch im Jahre 1973 musste man sich auf eine entsprechende Aussage fur unvollständige

(k =_i 1) Steiner Tripelsysteme beschranken Erst im Jahre 1978 gelang F Mendel-
sohn mit Methoden der universellen Algebra ein Beweis Unschön bleibt die
merkwürdige Abschätzung fur i Leider handelt es sich nur um einen Existenzbeweis Die
explizite Bestimmung der Automorphismengruppe eines vorgegebenen Systems
STS (i) ist im allgemeinen sehr schwierig
Man kann beweisen, dass es zu jedem gegebenen System STS (i) mit v e STS eine
Gruppe von scharf 1-transitiven Automorphismen gibt Das muss nicht die volle
Automorphismengruppe sein (Dabei heisst scharf 1-transitiv, dass es zu zwei
gegebenen, verschiedenen Punkten x, y e V stets genau einen Automorphismus gibt,
der x aufy abbildet)

6 3 Die Satze von M Hall

Aus der Fülle weiterer Ergebnisse greifen wir lediglich noch drei heraus (M Hall)

6 3 1 Fur jeden Punkt eines STS (v) gebe es eine Involution mit genau diesem Punkt
als Fixpunkt Dann erzeugt jedes Dreieck (drei Punkte nicht auf einer Geraden) in
unserem STS (i) ein STS (9) Es gilt auch die Umkehrung

6 3 2 Fur jede Gerade eines STS (v) gebe es eine Involution mit genau den Punkten
dieser Geraden als Fixpunkten Dann erzeugt jedes Dreieck in unserem STS (v)
entweder ein STS (9) oder aber ein STS (7) Die Umkehrung gilt nicht

6 3 3 Zu STS (v) gebe es eine Automorphismengruppe, die auf den Dreiecken transitiv

operiert Dann ist STS (i) entweder vom Typ 1 oder vom Typ 2

Typ 1 Jedes Dreieck in unserem STS(v) erzeugt ein STS (7) (das sind die projektiven
Räume der Ordnung 2)
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Typ 2 Jedes Dreieck in unserem STS(i) erzeugt ein STS (9) (das sind nicht unbedingt

die affinen Räume der Ordnung 3)

7. Ableitungen

7 / Ableitung eines Steinersystems

Ein Steinersystem 5 (t, k,i) habe die Punktmenge V und die Geradenmenge B Wir
greifen einen Punkt x heraus, und betrachten alle Geraden durch ihn Dann bilden
die Punktmenge V V\ {x} und die genannte Geradenmenge

B'={b\{x}\beB und x e ft}

ein Steinersystem S(t - l, k- l9 v- l) Man spricht von der Ableitung des Systems
S(t, k, i) im Punkt*

7 2 Probleme und Losungen

1 2 1 Gegeben v e STS

Fur welche i e STS gibt es abgeleitete STS (t>)?

Notwendige und hinreichende Bedingung fur die Existenz von SQS(i) ist v 8, 10 +
6 n, n e N0 Daraus folgt bereits, dass es fur alle v e STS abgeleitete Systeme STS (v)

gibt

7 22 Gegeben STS(i)

Ist jedes STS (i) Ableitung eines SQS (v)

Fur i < 13 ist diese Frage seit langer Zeit positiv beantwortet, fur t 13 erst seit 1972

Und wie steht es mit den 80 Systemen 575(15)? Im Jahre 1980 wusste man, dass

43 Systeme dieser Art abgeleitet sind, 1984 waren es schon 68 Ein Jahr spater zeigten
dann J Diener, E Schmitt, H L de Vnes mit Computereinsatz, dass jedes der 80

Systeme Ableitung eines geeigneten Quadrupelsystems ist Weitere explizite Aussagen
uber kleine Werte von t liegen nicht vor

7 2 3 Allgemeinere Aussagen

K T Phelps fand einige allgemeinere Satze So konnte er etwa zeigen, dass ein
575(1 + 2 t), das entweder ein abgeleitetes Untersystem der Ordnung v besitzt oder
aber ein „Untersystem" der Ordnung v mit einem „fehlenden" Tripel, dann selber
abgeleitet ist

7 3 Und nochmals eine Verallgemeinerung f

Welche STS (i) sinds-fache Ableitungen von S(2 +s,3 +s,v +s)*> Dabei gilt .eN
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Die Frage ist in dieser Allgemeinheit nicht beantwortet Wohl aber liegen einzelne
Beispiele vor
Dreifache Ableitung der in Abschnitt 1 3 angegebenen Systeme 5 (5, 6, n) liefert
5 (2, 3,n- 3), also Steiner Tripelsysteme STS (n - 3) fur n e {12, 24,48, 72, 84}

Bemerkung

Die beiden als Witt-Design bekannten Systeme 5(5,6,12) und 5(5,8,24) ergeben
die Ableitungen 5 (4, 5,11), 5 (4, 7, 23), 5 (3, 6, 22), 5 (2, 5, 21) Diese 6 Systeme sind
besonders bedeutungsvoll, da es sich bei den zugehörigen Automorphismengruppen
um die sogenannten Mathieugruppen - das sind spezielle einfache Gruppen - handelt

Die Kardinahtat dieser Gruppen ist bekannt, auch uber die Transitivität weiss
man Bescheid So ist etwa die Automorphismengruppe von 5(5,6,12) die einzige
scharf 5-transitive Gruppe Sie besitzt die Kardinahtat 26 33 5 11 (Mathieu)

8. Auflösbare Systeme

81 Die Schulmadchengeschichte

Der Figur 1 entnehmen wir fur das STS (9) die Existenz einer „Parallelenschar", namhch

{1,2, 3}, {4, 5, 6}, {7, 8, 9} Dabei stellt eine Menge von Geraden eine „Parallelenschar"

(oder auch einen 1-Faktor) dar, wenn durch jeden Punkt aus Vgenau eine
Gerade der Schar geht und keine zwei Geraden der Schar einen Punkt gemeinsam
haben Noch mehr1 Wir finden in Figur 1 drei weitere „Parallelenscharen" {1,4, 7},
{2,5,8}, {3,6,9}, {1,5,9}, {3,4,8}, {2,6,7}, {3,5,7}, {2,4,9}, {1,6,8} Jetzt ist die
Menge B aller Geraden in vier „Parallelenscharen" so eingeteilt (partitiomert), dass

jede Gerade in genau einer Schar hegt Wir sprechen von einem „Parallehsmus" (oder
auch von einer 1-Faktonsierung) und nennen das System STS (v) jetzt auflösbar
Und hier eine Prognose Falls ein System STS (v) auflösbar sein soll, muss jede
„Parallelenschar" notwendig genau j v Geraden enthalten und es muss genau ft }.=
\(v—l) „Parallelenscharen" geben
Ein Beispiel eines in dieser Weise auflösbaren Systems liefert das bekannte Schul-

madchenproblem von T P Kirkman aus dem Jahre 1850 15 Schulmadchen machen

an jedem der 7 Tage einer Woche einen Spaziergang Sie bilden dabei stets Reihen
zu je drei Lasst es sich so einrichten, dass keine zwei Madchen zweimal miteinander
gehen?
Hier ist eine Losung

Mo

Di
Mi
Do

Fr
Sa

So

1,2,5} {3, 14, 15} {4,6,12} {7,8,11} {9,10,13}

1,3,9} {2,8,15} {4,11,13} {5,12,14} {6,7,10}
1,4,15} {2,9,11} {3,10,12} {5,7,13} {6,8,14}
1,6,11} {2,7,12} {3,8,13} {4,9,14} {5,10,15}

1,8,10} {2,13, 14} {3,4,7} {5,6,9} {11,12,15}

1,7,14} {2,4,10} {3,5,11} {6,13,15} {8,9,12}
1,12,13} {2,3,6} {4,5,8} {7,9,15} {10,11,14}
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Dabei wurden die Madchen mit den natürlichen Zahlen von 1 bis 15 bezeichnet
Jede Zeile stellt eine „Parallelenschar" dar Jede Gerade kommt in genau einer Schar

vor Wir haben ein auflösbares STS (15)

8 2 Gegeben v e STS

Fur welche Ordnungen v e STS gibt es auflösbare Systeme STS (v)

Im Jahre 1971 bewiesen R M Wilson und D K Ray-Chaudhun, dass genau fur alle
Ordnungen i=9 + 6«,«eN0, auflösbare Steiner Tripelsysteme existieren Die
Entscheidung, ob em vorgegebenes System STS(v) mit v 9 + 6n, neN0, auflösbar ist,
und die explizite Bestimmung des „Parallehsmus" kann sehr schwierig sein Wieviele
verschiedene Auflosungen existieren jeweils?

9. Die Sache mit den Untersystemen

9 1 Untersystem

Ein STS(w) mit der Punktmenge W und der Geradenmenge G heisst Untersystem
des Systems STS (v) mit der Punktmenge V und der Geradenmenge B, wenn W cz V
undGczB

9 2 Problem

Seien i, w e STS und v > w Gibt es ein STS (i) mit einem Untersystem STS (w)

Die Antwort lautet ja, sofern die Bedingung vv __i j (v — 1) erfüllt ist Ein erster Beweis
dieses Satzes wurde 1973 von J Doyen - R M Wilson, ein weiterer, wesentlich
vereinfachter 1979 von G Stern - H Lenz gegeben
Ist statt v,weSTS ein System STS(v) gegeben, so kann die explizite Bestimmung
möglicher (etwa aller maximalen) Untersysteme sehr schwierig sein

10. Weitere Definitionen — weitere Probleme

101 Definition Disjunkte STS (v)

Zwei STS (i) uber derselben Punktmenge V heissen disjunkt, wenn sie keine
Gerade gemeinsam haben
Sind Bx, B2 die zugehongen Geradenmengen, so gilt also \BX n B2 | 0

102 Problem

Wie gross ist bei gegebener Ordnung v e STS die Maximalzahl D (v)

paarweise disjunkter STS (v)
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Schon T P Kirkman wusste D (7) 2, D(9) l Inzwischen fand H F Denniston
noch D (13) 11 Von einigen Teilergebnissen L Teirhncks abgesehen ist nichts
bekannt

10 3 Erweiterung Fast disjunkte STS (i)

Zwei 575 (i) uber derselben Punktmenge V heissen fast disjunkt, wenn sie m e N
Geraden gemeinsam haben Es gilt also | Bx n B21 m

10 4 Problem

Die Menge J(i) aller bei gegebenem v vorkommenden Werte m wurde von C C
Lindner und A Rosa 1975 vollständig bestimmt
P Muller beschäftigt sich mit einer solchen Mengenbestimmung fur den Fall, dass die
paarweise disjunkten 575 (i) auch noch isomorph sind

10 5 Erweiterung Orthogonale STS (v)

Gegeben sind zwei disjunkte Steiner Tripelsysteme Sx und 52 Wenn zwei Punktepaare

(x, y), (u, i) in 5! zwei sich schneidende, in S2 aber zwei sich nicht schneidende
Geraden bestimmen, dann heissen Sx und 52 orthogonal
Das bedeutet {x,y, a], {u, v, a] e Bx mit aeV und weiter {x,y, ft}, {«, v, c} e B2 mit
b,ce V, b-hc
Fur unendlich viele Werte v l + 6 n mit «eN0 konnten Paare orthogonaler 575(i)
konstruiert werden Im Falle i 9 existiert so etwas überhaupt nicht, wahrend
A Rosa orthogonale STS (27) angegeben hat Mehr weiss man nicht
Wie schon bei den in 4 2 angegebenen zwei Konstruktionsverfahren verwendet man
fur die Untersuchung von Steinersystemen in zunehmendem Masse geometrische Ver-
anschauhchungen Ja, es werden sogar geometrische Begnffe definiert Wir geben hier
zwei Beispiele solcher Begriffe, namhch den des Ovals und den der Dimension

11. Spezielle Punktmengen in STS (v)

111 Verschiedene Definitionen

Sei M cz Feine nichtleere Punktmenge Wir sprechen dann von

— Bogen, wenn fur alle g e B gilt | M n g \ e {0, 1, 2},
— Vollständigem Bogen, wenn M ein nicht in einem Bogen grosserer Mächtigkeit

enthaltener Bogen ist,
— Blockierender Menge, wenn fur alle g e B gilt \M ng\ e {1,2},
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— Oval, wenn M ein Bogen ist und in jedem seiner Punkte genau eine Tangente
existiert,

— Knotenoval, wenn M ein Oval ist, dessen Tangenten sich in genau einem Punkt
(dem Knoten) schneiden,

— Regulärem Oval, wenn M ein Oval ist und in jedem Tangentenpunkt, der nicht auf
M liegt, genau zwei Tangenten existieren.

11.2 Probleme zu Bögen

Wie gross ist die maximale bzw. die minimale Kardinahtat emax(t>) bzw. emm(v)
vollständiger Bögen in STS (v)

Was weiss man?

emax (v) \ (v + 1) genau dann, wenn v e HSTS, und emax (v) j (v ~ 1) genau dann,
wenn veRSTS. Dabei ist HSTS die Menge aller Steinerzahlen v 7, 15+12«,
«eN0, und RSTS die Menge aller übrigen Steinerzahlen, also v 9, 13 + 12«,
« e N0.
Für die minimale Kardinahtat kennt man neben einigen Werten für kleine Ordnungen
lediglich die Abschätzung emin(f) is [1/27T].

11.3 Und die blockierenden Mengen

In Steiner Tripelsystemen STS (v) gibt es keine blockierenden Mengen.

11.4 Ovalprobleme

11.4.1 Wie steht es mit der Existenz?

Gibt es Steiner Tripelsysteme STS (v) mit Knotenovalen
und solche mit regulären Ovalen

Diese Frage wurde im Prinzip beantwortet (H. Lenz, H. Zeitler). Genau für alle
v e HSTS (bzw. für alle v e RSTS) existieren STS (v) mit Knotenovalen (bzw. mit
regulären Ovalen). Damit sind die beiden Mengen HSTS und RSTS von Steinerzahlen

geometrisch charakterisiert. Auch über die Anzahl von Knotenovalen bzw.

regulären Ovalen und eine entsprechende weitere Klassifizierung von Steinerzahlen gibt
es bereits einige Teilresultate.

11.4.2 Und andere Ovale?

Gibt es Steiner Tripelsysteme STS (v) mit anderen - von den Knotenovalen
und den regulären Ovalen verschiedenen - Ovalen?
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Es wurden inzwischen einige weitere Ovaltypen gefunden (H Zeitler) Ovale also mit
völlig andersartigen Tangentenkonfigurationen Eine allgemeine Ovaltheone aber
fehlt - obwohl sie sehr wünschenswert ist (brauchbar vor allem zur Erleichterung der
schwierigen Nicht-Isomorphieuntersuchungen)

12. Dimension bei STS (v) — gibt es das?

12 1 Definition

Seien Vx, V2, ,VnczV die samtlichen Erzeugendenmengen von V (jede solche
Menge V, „spannt" V auf), dann heisst d= min {| V, \ - 1}, i e {1, «} die Dimension

d von 575 (i)

72 2 Probleme

Gibt es STS(i) mit Dimension deN? Was lasst sich uber die Dimension eines
vorliegenden STS (i) sagen und was uber die Veränderung der Dimension bei Anwendung
lekursiver Verfahren9

d=2

Wenn jedes Dreieck das betreffende System aufspannt, spricht man von einem
nichtentarteten zweidimensionalen STS (i) Spannt ein Dreieck das System auf, ein
anderes aber nicht, so haben wir ein entartetes zweidimensionales System
J Doyen konnte 1969/70 beweisen, dass fur alle Steinerzahlen i nichtentartete und fur
alle Steinerzahlen i ___

15 auch entartete zweidimensionale STS (i) existieren

d=3

Dreidimensionale 575(i) gibt es fur ve {15,27,31,39} und fur alle Steinerzahlen

i 45, ausgenommen möglicherweise i e {51, 67, 69, 145}
Daneben finden sich nur kleinere Teilresultate So bleibt bei Anwendung des
Zentralverfahrens die Dimension unverändert oder sie wachst genau um 1, wahrend das

Polygonverfahren die Dimension stets auf 2 reduziert (Zeitler)

13. War das schon alles?

Mit diesem doch recht umfangreich geratenen Bericht uber Tripelsysteme ist das

Thema noch lange nicht ausgeschöpft Hier stichwortartig einige weitere Themenbereiche

Planare, unvollständige, zyklische, 2-fache, Systeme, vielfaltige Verbindungen zur
Graphentheorie (chromatische Zahl, chromatischer Index, Ketten (trains), vollständige

Ketten, Möglichkeiten des Computereinsatzes,
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Wir verzichten notgedrungen auf weitere Darstellungen und auch auf spezielle
Literaturangaben Statt dessen nennen wir lediglich einige Übersichtswerke Sollte ein
Leser noch nicht völlig verschreckt sein (hoffentlich gibt es solche') und gar den
Wunsch haben, noch mehr zu erfahren, so sei er auf die ausführliche Bibliographie
zur Designtheorie in [3] verwiesen (sie wurde inzwischen auf uber 1000 Titel erweitert1)

Dort kann er unter den im vorliegenden Text angegebenen Autorennamen
genaue Literaturhinweise finden und dann mit dem Studium dieses hochaktuellen, aber
auch äusserst interessanten Gebietes beginnen Viel Vergnügen und viel Erfolg'

H Zeitler, Math Institut, Universität Bayreuth
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Periodicity of p-stdic continued fractions

A well known theorem of Lagrange states that the simple continued fraction expansion
of a real number is periodic if and only if that real number is quadratic irrational Several
authors have tned to establish analogous results for continued fractions of /?-adic numbers

The present author [3] showed that such a result is possible if one Starts with
sequences of approximation lattices of/?-adic numbers, instead of continued fractions We

note that from a periodic sequence of approximation lattices of a /?-adic number £ it is

easy to construct a periodic continued fraction expansion of £

This process of constructing the continued fraction such that it is periodic, is the reverse
of the process in the real case, where one Starts by defining the continued fraction, and
then tnes to prove its periodicity It would be interesting to obtain periodicity results for
a given p-adic continued fraction expansion method, e g that introduced by Schneider [2]
Bundschuh [1] remarks that for this type of /?-adic continued fractions a periodic
continued fraction represents either a rational /?-adic number of special type, or a quadratic
irrational p-adic number (analogous to Euler's theorem) Further, he gives some numencal

evidence indicating that the converse (analogous to Lagrange's theorem) may not be

true
It is the purpose of this note to show that for Schneider's continued fraction algorithm
for p-adic numbers, it may indeed happen that quadratic irrational numbers in Qp have

non-penodic continued fraction expansions Thus for this type of continued fractions an
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