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Kleine Mitteilungen

Ein elementargeometrischer Beweis des Lotensatzes von Hjelmslev

Bachmann hat die ebene metrische (absolute) Geometrie mit Hilfe von Bewegungsgruppen

axiomatisch aufgebaut (s. [1] S. 32 ff.). In diesem Aufbau spielt die Konstruktion der
vierten Büschelgerade d im Büschel a, b9 c mit anb nc {S} eine wichtige Rolle.
Bezeichnet man die Spiegelung an der Geraden g mit Sg9 so ist d die Gerade, für die
SaSbSc Sd gilt.
Diese vierte Büschelgerade läßt sich mit Hilfe des Lotensatzes konstruieren, den Hjelmslev

als den Fundamentalsatz der ebenen metrischen Geometrie bezeichnet hat (s. [1]
S. 42). Im folgenden wird dieser Satz dadurch elementargeometrisch bewiesen, daß man
die Konstruktion von d nach dem Lotensatz mit zwei anderen Konstruktionen von d in
Beziehung setzt.

Lotensatz

Liegen a, b, c mit anbnc {S} im Büschel, wobei Sa Sb Sc Sd ist, und ist a' Senkrechte
auf a in A e a, c' Senkrechte auf ein Cec und schneiden sich a! und c' in Pe b, so liegen
d, b, c' genau dann im Büschel, wenn AC senkrecht zu d ist.

Konstruktion von d

Mit diesem Satz läßt sich d als das von S auf AC gefällte Lot konstruieren, wenn man
in einem beliebigen Punkt A ea, A + S die Senkrechte d auf a errichtet, im Schnittpunkt
P von a! mit b das Lot c' auf c fällt und C e c der Fußpunkt dieses Lotes ist.

^

Figur 1
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Andere Konstruktionen von d

1 Konstruktion

Es seien anb nc {S}, £ (a,ft) a und d die Gerade durch S mit <£ (c,d) — a Dann
ist d die vierte Buscheigerade zu a, b, c fur die gilt

-, s.___c

Beweis

Ds 2a bedeute die Drehung um S mit Drehwinkel 2 a Aus

£>s 2*Ds -2cc IdoSaSbScSd Id

ergibt sich

Sa Sb Sc Sd Sd Sd o Sa Sb Sc Sd

2 Konstruktion

Es seien e die Gerade durch S mit £ (c, e) cp ß — ol, ß <£ (ft, c), _4 e a und -4+5, der
Kreis (K) um S mit r \SA\ schneide e in £ Dann ist d die Winkelhalbierende von

* (ÄSE)
Konstruiert man also zunächst den Schnittpunkt E von (K) mit e (e ergibt sich mit Hilfe
von £ (c, e) £ (ft, c) — £ (a, ft)), so erhalt man d als das von S auf A E gefällte Lot

Zusammenhang mit dem Lotensatz

Man zeichnet in Figur 3 die in A auf a senkrecht stehende Gerade a! ein, ihr Schnittpunkt
mit ft sei P Der Schnittpunkt von AE mit c heiße C, der Schnittpunkt von AE mit d sei

D Es sei |S_4| r
Um den Lotensatz zu beweisen ist zu zeigen, dass CP senkrecht auf c steht

(K)

cp-p-a

Figur 2

p/

K)

Figur 3



88 El Math, Vol 43, 1988

Beweis

In dem bei D rechtwinkligen Dreieck SDA ist \SD\ r cos(a + cp), in dem bei D
rechtwinkligen Dreieck SDC ist |<SC| |iSD| cosa Somit ist \SC\ r cos(a + cp) cosa
In dem bei _4 rechtwinkligen Dreieck SPA ist |SP| \SA\ cos a Die Projektion von |SJP|

auf c ist | S P | cos (oL + cp), also ist diese Projektion r cos ((x + cp) cos a | S C | Deshalb ist
der Schnittpunkt C von AE mit c der Fußpunkt des von P auf c gefällten Lotes, somit
steht PC senkrecht auf c

Anmerkung Weil <&(SCP) 90° ist, kann man C auch als Schnittpunkt des Thales-
Kreises uber \SP\ mit c konstruieren Das Viereck SCPA ist ein Sehnenviereck mit zwei
gegenüberliegenden rechten Winkeln bei A und bei C

Helmut Sieber, Böblingen
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Aufgaben

Aufgabe 961. Fur positive Zahlen x1,x2,x3 sei

Pi (*i + x2 + x3)/3, p2 (XiX2 + x2x3 + x3xi)/39 p3 xlx2x3

Dann gilt

p\ + Sp\>i6plp2p3

mit Gleichheit genau dann, wenn xx x2 x3 Dies ist zu zeigen

V D Mascioni, Origlio

Losung Setzt man

f(xl9x29x3)=pl + Spl - 6ptp2p39

dann ist

f(t xl9tx29tx3) t6f(xl9x2,x3)

fist also homogen in x1?x2,x3 vom Grade 6 und man kann oBdA normieren

Xi x2 1, xx x3 1 + a9 x2 x3 1 + ft, 0 < a < b
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