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Kleine Mitteilungen

Ein elementargeometrischer Beweis des Lotensatzes von Hjelmslev

Bachmann hat die ebene metrische (absolute) Geometrie mit Hilfe von Bewegungsgrup-
pen axiomatisch aufgebaut (s. [1] S. 32ff.). In diesem Aufbau spielt die Konstruktion der
vierten Biischelgerade d im Biischel a, b, ¢ mit anb n ¢ = {S} eine wichtige Rolle.
Bezeichnet man die Spiegelung an der Geraden g mit S, so ist d die Gerade, fir die
S,S,S. =8, gilt.

Diese vierte Biischelgerade 148t sich mit Hilfe des Lotensatzes konstruieren, den Hjelms-
lev als den Fundamentalsatz der ebenen metrischen Geometrie bezeichnet hat (s. [1]
S. 42). Im folgenden wird dieser Satz dadurch elementargeometrisch bewiesen, dafl man
die Konstruktion von d nach dem Lotensatz mit zwei anderen Konstruktionen von d in
Beziehung setzt.

Lotensatz

Liegen a, b, c mit a n b N ¢ = {S} im Biischel, wobei S, S, S, = S, ist, und ist a’ Senkrechte
auf a in A€a, ¢’ Senkrechte auf ¢ in C € ¢ und schneiden sich a’ und ¢’ in P e b, so liegen
a’, b, ¢’ genau dann im Biischel, wenn AC senkrecht zu d ist.

Konstruktion von d

Mit diesem Satz 148t sich d als das von S auf AC gefillte Lot konstruieren, wenn man
in einem beliebigen Punkt 4 €a, A + S die Senkrechte a’ auf a errichtet, im Schnittpunkt
P von a’ mit b das Lot ¢’ auf ¢ fillt und C ec der FuBpunkt dieses Lotes ist.
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Andere Konstruktionen von d

1. Konstruktion

Es seien anbnc = {S}, « (a,b) = « und d die Gerade durch S mit < (c,d) = —a. Dann
ist d die vierte Biischelgerade zu a, b, ¢ fiir die gilt:

S;=85,8,S8..

Beweis:

Dy ,, bedeute die Drehung um § mit Drehwinkel 2 a. Aus
Dg 5, D5 _3,=1d<S,5,5.5,=1d

ergibt sich
S.8,5.8;,8,=8;+<8,5,8.=38,.

2. Konstruktion

Es seien e die Gerade durch S mit £ (c,e)=@p=f—0o, f = X (b,c), Acaund A+ §; der
Kreis (K) um S mit r = |SA| schneide e in E. Dann ist d die Winkelhalbierende von
X (ASE).

Konstruiert man also zunédchst den Schnittpunkt E von (K) mit e (e ergibt sich mit Hilfe
von ¥ (c,e) = < (b,c) — < (a, b)), so erhdlt man d als das von S auf AE gefillte Lot.

Zusammenhang mit dem Lotensatz

Man zeichnet in Figur 3 die in A auf a senkrecht stehende Gerade a’ ein; ihr Schnittpunkt
mit b sei P. Der Schnittpunkt von 4 E mit ¢ heiBle C, der Schnittpunkt von 4 E mit d sei
D. Es sei |SA| =r.

Um den Lotensatz zu beweisen ist zu zeigen, dass C P senkrecht auf c steht.
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Beweis:

In dem bei D rechtwinkligen Dreieck SDA ist |SD| =r cos(a+ ¢); in dem bei D recht-
winkligen Dreieck SDC ist |[SC| = |SD|: cosa. Somit ist |[SC| =r cos(x+ ¢): cosa.

In dem bei A rechtwinkligen Dreieck S PA ist |SP| = |SA|: cos a. Die Projektion von |S P|
auf c ist | S P|cos(x + ¢); also ist diese Projektion r cos (a+ ¢): cosa = |SC|. Deshalb ist
der Schnittpunkt C von AE mit ¢ der FuBpunkt des von P auf c geféllten Lotes, somit
steht P C senkrecht auf c.

Anmerkung: Weil X (SCP)=90° ist, kann man C auch als Schnittpunkt des Thales-
Kreises iiber |S P| mit ¢ konstruieren. Das Viereck S C PA ist ein Sehnenviereck mit zwei
gegeniiberliegenden rechten Winkeln bei 4 und bei C.

Helmut Sieber, Boblingen
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Aufgaben
Aufgabe 961. Fiir positive Zahlen x,, x,, x5 sei

Pri=(xy + X3+ x3)/3, pri=(xyX; + X3%3 + X3%,)/3, p3i=X1X;X3.
Dann gilt

p3+5p3=6p,p,p;

mit Gleichheit genau dann, wenn x; = x, = x;. Dies ist zu zeigen.

V. D. Mascioni, Origlio
Losung: Setzt man

S (x1,X3,X3) = p3 + 5p3 — 6P, p2p3,
dann ist
S Exy,tx;,tx3) = t° f (x4, %3, X3).
fist also homogen in x,,x,,x; vom Grade 6 und man kann oBdA normieren:

xl.X2=1, XIX3=1+a, xZX3=1+b, OSGSb.
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