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Fastpythagoräische Quadrupel

1. In [1] beschreibt O. Frink Methoden, alle Lösungen der diophantischen Gleichungen
x2 + y2 — z2 + 1 und x2 + y2 z2 — 1 zu finden. Wir lösen mit anderen Methoden das

analoge Problem für vier Variable. Ein Quadrupel (x, y, z, vv) natürlicher Zahlen heisse

fastpythagoräisch (FPQ), wenn es eine der beiden Gleichungen

x2 + y2 + z2 vv2 + 1 (1)

oder

X2 + y2 + z2 w2 - 1 (2)

erfüllt. Gesucht ist ein Verfahren zur Bestimmung aller FPQ. Wir betrachten Lösungen,
die nur durch Vertauschung von Komponenten auseinander hervorgehen, als nicht
wesentlich verschieden.

2. Wir lösen zuerst (1). Rechnet man modulo 4, so erkennt man, dass x,y,z nicht alle

gerade und nicht alle ungerade sein können.

Fall 1: x, y, vv gerade, z ungerade. Der Ansatz (x, y, z, vv) (2 a, 2 b, 2 c — 1,2 c + 2 r) führt
auf

_a2 + b2 - r2
°~ 27+1

Für jede Wahl von a, b, r mit den Nebenbedingungen a < b, r > 0, r2 < a2 + b2 und
2 r + 1 \a2 + b2 - r2 erhält man genau ein FPQ, wie man durch Einsetzen in (1) bestätigt.
Für r 0 ergibt sich so die Schar (2 a, 2 b, 2 a2 + 2 b2 - 1,2 a2 + 2 b2). (2,6,5,8) ist das

FPQ mit kleinstem vv, das nicht zu dieser Schar gehört. Ist (a, b, r + 1) ein pythagoräisches

Tripel, so entsteht das triviale FPQ (2a,2b,l,2r + 2). Weitere FPQ finden sich in
Tabelle 1 am Schluss dieser Note.
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Fall 2: x gerade, y, z, vv ungerade. Diesmal setzen wir

(x,y,z9w) (2a,2b- 1,2c- 1,2c- 1 +2r)

an und berechnen

a2 + b(b-\)-r(r-\)
C

Yr ;

offenbar muss a gerade sein. Mit a 2 e wird

4e2 + b(b-\)-r(r-\)c _
Diesmal sind e und b beliebig wählbar; r > 1 muss die Bedingung

2r\4e2 + b(b-l)-r(r-\)
erfüllen und so klein gewählt werden, dass c > b ausfällt (die letzte Bedingung ist bei r 1

stets erfüllt).
Für r 1 ergibt sich so die Schar (4e9 2b - l,4e2 + b(b - 1) - 1, 4e2 + b(b - 1) + 1).

(8,3,3,9) ist das kleinste FPQ, das nicht zu dieser Schar gehört. Für b 1 entstehen

/ 4e2-r2 4e2 + r2\
triviale FPQ 4 e, 1, 1, in denen die erste, dritte und vierte Komponente

ein pythagoräisches Tripel bilden. Weitere FPQ sind in Tabelle 2 zu finden.

3. Die Gleichung (2) lässt sich analog behandeln. Diesmal müssen x, y, z alle gerade oder
alle ungerade sein.

Fall 1. Mit (x,y,z,vv) (2a92b92c92c - 1 + 2r) kommt man zu

a2 + b2 - r(r - 1)
c 2r-l

FPQ kommen heraus, wenn man a beliebig und b > a wählt, und dann r > 1 mit
2r — 1 \a2 + b2 — r(r — 1) so klein wählt, dass c > b ausfällt.
Für r 1 ergeben sich die FPQ (2 a9 2 b9 2 a2 + 2 b29 2 a2 + 2 b2 + 1). Die kleinsten nicht
in dieser Schar auftretenden FPQ sind (4,4,4,7) und (2,8,10,13). Für weitere Beispiele
siehe Tabelle 3.

Fall2: Jetzt führt (x9y9z9w) (2a - 1, 2b - 1, 2c - 1, 2c + 2r) auf

_a(a-\) + b(b-\) + \ - r2
C~~

2r + l '

FPQ entstehen, wenn man a beliebig und b _> a wählt, und dann r > 0 mit
2r + l\a(a — 1) + b(b — 1) + l — r2 so klein wählt, dass b > c ausfällt. Dies geht
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Tabelle 1

x2 + y2 + z2 vv2 + 1,

x, y gerade, z ungerade

2 2 3 4

2 4 9 10

2 6 19 20

2 6 5 9

4 4 15 16

4 6 25 26

4 6 7 10

35

Tabelle 3

x2 + y2 + z2 vv2

x, y, z gerade

36

10 11

20 21

34 35

10 13

16 17

4 7

26 27

Tabelle 2

x2 + y2 + z2 w2 + 1,

x gerade, y, z ungerade

X y z vv

4 l 3 5

4 3 5 7

4 5 9 11

4 7 15 17

8 1 15 17

8 3 17 19

8 3 7 11

8 3 3 9

Tabelle 4
x2 + y2 + z2 w2 -1
x, y, z ungerade

X y z vv

l 1 2

3 5 6

5 13 14

7 25 26

7 7 10

3 3 9 10

3 5 17 18

3 7 29 30

sicher für r 0, was die Schar

(2a - 1, 2 b - 1, 2a(a - 1) + 2fr(fc - 1) + 1, 2cz(a - 1) + 2b(b - 1) + 2)

liefert. Das kleinste FPQ, das in ihr nicht vorkommt, ist (1,7,7,10). Weitere FPQ siehe

Tabelle 4.

4. Das beschriebene Lösungsverfahren liefert alle FPQ. Die präzise formulierten und
deshalb etwas kompliziert aussehenden Nebenbedingungen bewirken, dass jedes FPQ
genau einmal vorkommt. In den Tabellen sind fur jeden der 4 Falle die kleinsten FPQ
dargestellt.

J. Binz, Mathematisches Institut der Universität Bern
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