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Now, from ((10), (in)) we have

|
3 |2 3

{esc2 co}2 | Z csc2a/| -ü 3 Z csc4a, (15)
l/=i J *=i

Thus the right-hand side of (14) is positive, it is zero if and only if ai a2 a3 It
follows that the right-hand in (9) is greater than or equal to 3/co with equality if and

only if ol i a2 a3 This fimshes the proof of Theorem 1

We end this note by remarking that a straightforward application of Holder's
inequahty on (7) gives

3
3

1-^Zy-1-! (16)
coA ,_, (a,-cor

for every k iä 1
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On some inequalities connected with Fermat's equation

1. Introduction

In 1856 I A. Grunert ([3], see also [6] p 226) proved that if n is an integer, n 2 and
0 < x < y < z are real numbers satisfying the equation

xn + yn zn (1)

then

z - v < - (2)
n

This result was rediscovered by G Towes [7], and then by D Zeithn [8]
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In 1979 L. Meres [4] improved the result of Grünert, replacing (2) by

x
z — y<-, for a n + 1 — n2~n, n > 2. (3)

a ~ v '

In [1] we improved the result of Meres, replacing (3) by

x
z __ y < for n > 4 (4)

n + l

Fell, Graz and Paasche [2] have proved that, if equation (1) has a Solution in positive
integers x < y < z, where n ^ 2, then

x2 > 2 y + 1 (5)

We mention also the result of Perisastri (1969): z < x2 ([5]; [6] p. 226).
In this paper we establish the following theorems, which improve (4) and (5).

Theorem 1. Let k be a positive integer. If

->[(2„ + l)C1], C_=^L_
and if equation (1) has a Solution in real numbers 0 < x < y < z, then

z-y<^h- (6)

Theorem 2. If n is an integer, n 2 and if equation (1) has a Solution in real numbers
0 < x < y < z, then

x C7\ log 2 log 2
z-y<-C(n), where C(n) log2 1+— -f- < C2 < -^=_-. (7)

n \ nJ 2 y/2

Theorem 3. If equation (1) has a Solution in positive integers x < y < z for some n > 2,

then

x2>2z + l. (8)

2. Proof of the Theorems

Proof of Theorem 1. If x, y, z are real numbers satisfying (1) for some positive integer n,
and such that 0 < x < y < z, write

x by with 0 < b < 1
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Hence by (1) we obtain

i
z (bn + l)n -y

and

i
(bn + 1)" - 1

z-y - 1 x. (9)

Since the function

th->

i
(tn + l)n -1

is increasing for 0 < t < 1, (9) implies

i
z-y<(2n -\)x. (10)

For each k > 0 there is an n0(k) such that

(2»_l)<_[ for n n0(k)9 (11)
n + k

since

1

lim 1 +
n + k

We now show that (11) holds with

n°M W?kvVk + 1)- (12)

The inequality

2<(1+^-t) (13)

is equivalent to

log2<nlogfl+^-^J. (14)
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Since

l0g2<2(n+2fc)
+ r

Thus (11) is true if n0(k) is as in (12), and also if

n0(/c) [(2/c + l)C1], (15)

where [u] denotes the integral part of u. The proof is complete. We have for example

n0(l) 3, n0(2) 5, n0(3) 7,.... (16)

Proof of Theorem 2. From the proof of Theorem 1 it follows that

1

z-y <(2n - l)-x.

We have

2*-.+-- + -?£<.
n nz • 2!

2*-l=---2(_+_?__:A, withl<^<2^v^.
n \ 2n

Thus

i log 2/ CA log 2 log 22"-l=-^-(l+— where -^-<C2<~. (17)
w \ »/ 2 v/2

From (10) and (17) we obtain

z - y < - • C(n), where C(n) log2( 1 + — (18)
n \ n

and

log2<
2

c <log2
2 ^'

The proof is; complete.
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Proof of Theorem 3. We may assume that x, y, z are relatively prime. Indeed, if the
theorem is true in this case, and if x, y, z are positive integers such that

xn + yn zn (some n > 2) and (x, y9z) d with d > 1

set x dx', y dy', z dz'. Then (x',y',zf) 1, so that

(x')2 ^ 2 z' + 1; on multiplying by d we get

2z + 1 < 2z + d d(2z' + l) d(x')2 < x2

Now if x < y < z are positive real numbers such that

x2 + y2 z2

then

xn + yn <zn for n > 2,

since

z* zn~2(x2 + y2) > xn~2 • x2 + yn~2 • y2 xn + yn.

It follows that if equation (1) has a Solution in positive integers x < y < z for some n > 2,

then

(*) x2 + y2 > z2

Now if z > y and y, z are integers, then z — y + 1 and by (*),

x2 > z2 - y2 ^ z2 - (z - l)2 2z - 1,

whence

x2^2z.

Now x2 2z is impossible if x" + yn zn and (x,y,z) 1.

Therefore x2 > 2z + 1.

The proof is complete.
Krystyna Bialek

Department of Mathematics
Pedagogical University
Zielona Göra, Poland
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Fastpythagoräische Quadrupel

1. In [1] beschreibt O. Frink Methoden, alle Lösungen der diophantischen Gleichungen
x2 + y2 — z2 + 1 und x2 + y2 z2 — 1 zu finden. Wir lösen mit anderen Methoden das

analoge Problem für vier Variable. Ein Quadrupel (x, y, z, vv) natürlicher Zahlen heisse

fastpythagoräisch (FPQ), wenn es eine der beiden Gleichungen

x2 + y2 + z2 vv2 + 1 (1)

oder

X2 + y2 + z2 w2 - 1 (2)

erfüllt. Gesucht ist ein Verfahren zur Bestimmung aller FPQ. Wir betrachten Lösungen,
die nur durch Vertauschung von Komponenten auseinander hervorgehen, als nicht
wesentlich verschieden.

2. Wir lösen zuerst (1). Rechnet man modulo 4, so erkennt man, dass x,y,z nicht alle

gerade und nicht alle ungerade sein können.

Fall 1: x, y, vv gerade, z ungerade. Der Ansatz (x, y, z, vv) (2 a, 2 b, 2 c — 1,2 c + 2 r) führt
auf

_a2 + b2 - r2
°~ 27+1

Für jede Wahl von a, b, r mit den Nebenbedingungen a < b, r > 0, r2 < a2 + b2 und
2 r + 1 \a2 + b2 - r2 erhält man genau ein FPQ, wie man durch Einsetzen in (1) bestätigt.
Für r 0 ergibt sich so die Schar (2 a, 2 b, 2 a2 + 2 b2 - 1,2 a2 + 2 b2). (2,6,5,8) ist das

FPQ mit kleinstem vv, das nicht zu dieser Schar gehört. Ist (a, b, r + 1) ein pythagoräisches

Tripel, so entsteht das triviale FPQ (2a,2b,l,2r + 2). Weitere FPQ finden sich in
Tabelle 1 am Schluss dieser Note.
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