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Now, from ((10); (iii)) we have

2 3
{csc? w}? {Z csc cx} =3 cscta;. (15)

i=1 i=1

Thus the right-hand side of (14) is positive; it is zero if and only if a;=a,=0o;. It
follows that the right-hand in (9) is greater than or equal to 3/w with equality if and
only if o; = oy = a3. This finishes the proof of Theorem 1.

We end this note by remarking that a straightforward application of Holder’s
inequality on (7) gives

3 w1
w’ i=1(0‘i—60)/WL

lIA

(16)

for every A= 1.
Faruk Abi-Khuzam
American University of Beirut, Lebanon
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On some inequalities connected with Fermat’s equation

1. Introduction

In 1856 1. A. Griinert ([3], see also [6] p. 226) proved that if n is an integer, n = 2 and
0 < x < y < z are real numbers satisfying the equation

X" 4y =" §))
then

<= )
Z == =
y n

This result was rediscovered by G. Towes [7], and then by D. Zeitlin [8].
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In 1979 L. Meres [4] improved the result of Griinert, replacing (2) by
X
z=y<-, fora=n+1—-n*"nx=2. (3)

In [1] we improved the result of Meres, replacing (3) by
z < x for n> 4 4)
- —_— n=4.
Y n+1 -

Fell, Graz and Paasche [2] have proved that, if equation (1) has a solution in positive
integers x < y < z, where n = 2, then

x2>2y+1. (5)

We mention also the result of Perisastri (1969): z < x2 ([5]; [6] p. 226).
In this paper we establish the following theorems, which improve (4) and (5).

Theorem 1. Let k be a positive integer. If

log2
>[2k+1)Cy], C,=F—r""—
and if equation (1) has a solution in real numbers 0 < x < y < z, then

X
n+k’

z—y< (6)

Theorem 2. If n is an integer, n = 2 and if equation (1) has a solution in real numbers
0<x<y<z, then

C,\ log2 log?2
z—y<§C(n), where C(n)=log2(1+—;13>, 8L, <282 )

2 /2

Theorem 3. If equation (1) has a solution in positive integers x < y < z for some n > 2,
then

x2>2z+1. ®)

2. Proof of the Theorems

Proof of Theorem 1. If x, y, z are real numbers satisfying (1) for some positive integer n,
and such that 0 < x < y < z, write

x=40y with 0<d<1.



80

Hence by (1) we obtain
1
z=@0"+1)"-y
and

1
@+ 1)" —1
_.__—___..__-x

P

z—y=

Since the function

1
@ +1)" —1
tH———T—————

is increasing for 0 < t < 1, (9) implies
1

z—y<(@22"—-1)-x.

For each k > 0 there is an n,(k) such that
2 1

(2"*—1)<m for ngno(k),

since

1 n
li 1 =&,
nLn;( +n+k> ¢

We now show that (11) holds with

log2

"o = 0 " Tog2)

2k +1).

The inequality

1 n
2 1
<( +n+k)

is equivalent to

1
log{1+——]).
log2 <n og( +n+k)
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(10)

(11)

(12)

(13)

(14)
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Since
log{ 1+ ! > - for (n+k) >0, (14 ist if
or
£ n+k) 20+ k) +1 " ’ 1 true 1
2n
log2 < —M .
B mtl+1

Thus (11) is true if ny(k) is as in (12), and also if
no(k) = [(2k + 1)C4], (15)
where [u] denotes the integral part of u. The proof is complete. We have for example

ne() =3, ny@) =5, ne(3=17,.... (16)

Proof of Theorem 2. From the proof of Theorem 1 it follows that

1
n

z—y<@2"-1)-x.

We have

i log2 (log2)?
+ n +n2-2!

<,

1 1
r—h380+@ﬂ>wm14<rgﬁ.

n 2n
Thus
1 log?2 C log?2 log?2
2»_1=1g..(1+__.2.), where 1982 _ ¢, 1082 a7
n n 2 \/5

From (10) and (17) we obtain
x C,
z—y<-—-C(n), where C(n)=1log2 1+——’;~ (18)
n

and

log2 log2

2 T

The proof is complete.
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Proof of Theorem 3. We may assume that x, y, z are relatively prime. Indeed, if the
theorem is true in this case, and if x, y, z are positive integers such that

x"+ y"=z"(somen>2) and (x,y,z)=d withd>1,
set x =dx’, y=4dy', z=dz. Then (x,y,2) = 1, so that

(x)* 22z +1; on multiplying by d we get

2z+1<2z+d=dQ2z +1) £d(x)* < x?.

Now if x < y < z are positive real numbers such that

then
x"+y'<z" for n>2,
since
A4 p) > X2 x4 2yt = g

It follows that if equation (1) has a solution in positive integers x < y < z for some n > 2,
then

(*) x4 y*>z%.

Now if z > y and y, z are integers, then z = y + 1 and by (),
x2>22—y? 222 —(z-1)=2z—-1,

whence
x?=2z.

Now x? = 2z is impossible if x" + y" = z" and (x, y,z) = 1.
Therefore x2 >2z + 1.
The proof is complete.
Krystyna Bialek
Department of Mathematics
Pedagogical University
Zielona Gora, Poland
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Fastpythagoriische Quadrupel

1. In [1] beschreibt O. Frink Methoden, alle Losungen der diophantischen Gleichungen
x% 4 y?> = z* + 1 und x? + y? = z2 — 1 zu finden. Wir 16sen mit anderen Methoden das
analoge Problem fiir vier Variable. Ein Quadrupel (x, y, z, w) natiirlicher Zahlen heisse
fastpythagordisch (FPQ), wenn es eine der beiden Gleichungen

x2+yP+z22=w2+1 (1)
oder
x2+y24+22=wr -1 (2)

erfullt. Gesucht ist ein Verfahren zur Bestimmung aller FPQ. Wir betrachten Losungen,
die nur durch Vertauschung von Komponenten auseinander hervorgehen, als nicht we-
sentlich verschieden.

2. Wir 18sen zuerst (1). Rechnet man modulo 4, so erkennt man, dass x, y,z nicht alle
gerade und nicht alle ungerade sein kénnen.

Fall 1: x,y,w gerade, z ungerade. Der Ansatz (x, y,z,w) = (2a,2b,2c — 1,2 ¢ + 2r) fihrt
auf

_a2+b2___r2
O 2r+1

Fiir jede Wahl von g, b, r mit den Nebenbedingungen a < b, r > 0, r* < a* + b* und
2r + 1|a® + b? — r? erhilt man genau ein FPQ, wie man durch Einsetzen in (1) bestitigt.
Fiir r = 0 ergibt sich so die Schar (2a,2b,2a® + 2b* — 1,2a* + 2b?). (2,6,5,8) ist das
FPQ mit kleinstem w, das nicht zu dieser Schar gehort. Ist (a, b, r + 1) ein pythagordisches
Tripel, so entsteht das triviale FPQ (2a,2b,1,2r + 2). Weitere FPQ finden sich in
Tabelle 1 am Schluss dieser Note.
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