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A new geometrie inequality

Let co e (0,n) be defined by the equation

COt CO COt OL i + COt 0L2 + COt 0L3 (1)

where olx, ct2, a3, are positive numbers satisfying

0LX + 0L2 + ol3 n (2)

If a,, a2 and a3 are interpreted as the three angles of a triangle (T)9 then co is called
the Brocard angle of (T) and there exists a number of identities relatmg co and olx a2
and ol3 [4] This note is concerned with the problem of finding inequahties between co

and ai, ol2 and a3 Since the appearance of [1], this problem has received much
attention At present the following inequahties are known [1-3]

1 n
2 co — (a i + a2 + a3) — (3)

This is the oldest known inequahty and follows from the inequahty cot2 co 3 which
is readily obtained from (1) The next inequahty is

2 co ]/olx a2a3 (4)

which was proved in [1] It is sharper than (3)
In [2] it was shown that

co3
___ (olx - co) (ol2 - co) (a3 - co), (5)

an inequahty that implies (4)
Using the method of Lagrange multiphers, Mascioni [5] proved the inequahty

2co^3(YJl/0Ll)-x (6)

This inequahty is sharper than (4), since the harmonic mean of three numbers is less

than or equal to their geometne mean A different proof of (6) appears in [3] Since
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(5) implies that co is less than or equal to the geometrie mean of olx - co, ol2-co and
0L3 — co, it is natural to ask how co is related to their harmonic mean. In the present
note we prove

Theorem 1. Ifco is defined by (1) and (2) then

co^3{Yll/(0Ll-co)rx. (7)

Equality holds ifand only ifoLx ol2 0.3 n/3.

1

Proof: Let f(x) cot x where 0 < x < n.
x

Then f'(x) ———I—^ an(* f"(x) 2csc3x jcosx — I \. Since sinx<x
olll XX 1 y Ji I

(sin
x\

1 >cosx in (0, n).

Then f"(x) < 0 in (0, n). It follows that / is a concave decreasing function in (0, n). In
particular, if xx, x2,..., x6 are six numbers in (0, n), then

If this inequality is used with the six numbers olx-co, ol2-co, ol3-co, co, co, co, all of
which lie in (0, n) we obtain

Yl \ cot (a, - co) + cot co \ ^6 {cot (n/6) - (6/n)}
,-1 l oct-co co]

_<{ cotco \ (8)
CO)

where the last inequality follows because co^n/6 and cotx-1/x is decreasing in

(0,n).
From (8) we obtain

3 3 j
Yl {cot(<x,- co) - cotco} + 3/co __. Yl • (9)
,»1 /=_i (x-co

The proof of (7) will be complete if we show that the sum on the left-hand side of (9)
is positive. This is the difficult part of the proof. It depends, in part, on the following
identities satisfied by co. Their derivation is quite easy.

(i) COt (Xi COt 0L2 + COt 0L2 COt OL3 + cot OL3 cot oti 1 ;

3 3

(n) n (cot ^ *~cot a*)=ncsca«'
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(iii) Yl esc2 ol, esc2 co ; (10)

3 3

(iy) Yl esc4 a/ + 4 cot co XJ esc a, esc4 co.
*=i /=i

We now consider the sum on the left-hand side of (9). We have

cot ol, cot co +1 — cot2 co + 2 cot co cot ol, +1
cot (oc, — co) — cot co cot co

COt CO - COt OL, COt CO - COt OL,

CSC OL

- (cot CO - cot oc,) H -

COt CO — COt OL,

Thus

CSC OL

Z {cot(a,-co) - cotco} =- 2cotco + Y, - (11)
i /Ti cot co-cota,

From (10; (i)) we have

cot olj cot ol2 1 - cot a3 (cot ocj + cot a2) 1 - cot a3 (cot co - cot a3)

esc2 ol3 - cot a3 cot co

Thus

(cot co - cot aj) (cot co - cot a2)

COt2 CO ~ COt CO (COt 0LX + COt 0L2) + CSC2 0L3 — cot oc3 cot co esc2 a3. (12)

A similar formula holds for csc2otj and csc2a2. Returning to the second sum in (11)
and using ((10); (ii)) and (12) we obtain

Z—: T~ "1 Ecs^a*5*-! Z csc4af. (13)
,_., cotco-cota, Jj .__,

"
/ 1

| X (cot co - cot a,) 11 esc a,
/=i /=i

If we use (13) in (11) and then use ((10); (iv)) we obtain

3
1 [

3 3
1

Z {cot (a, - co) - cot co} | Z esc4 ol, - 2 cot co YL esc ol,\
1=1 3 l/=i /=i[[ CSC OL,

/=-l

j f 3 ,3
(14)

| Z csc4a;+— Z csc4a,--— csc4a>| J3 Z esc4 a, - esc4 coJ

l/ i 2 ,__! 2 3 \ |s_, J3

IJcsca, 2 Yl esc ol,
1=1 *=i



78 El Math Vol 43, 1988

Now, from ((10), (in)) we have

|
3 |2 3

{esc2 co}2 | Z csc2a/| -ü 3 Z csc4a, (15)
l/=i J *=i

Thus the right-hand side of (14) is positive, it is zero if and only if ai a2 a3 It
follows that the right-hand in (9) is greater than or equal to 3/co with equality if and

only if ol i a2 a3 This fimshes the proof of Theorem 1

We end this note by remarking that a straightforward application of Holder's
inequahty on (7) gives

3
3

1-^Zy-1-! (16)
coA ,_, (a,-cor

for every k iä 1

Faruk Abi-Khuzam
American University of Beirut, Lebanon
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On some inequalities connected with Fermat's equation

1. Introduction

In 1856 I A. Grunert ([3], see also [6] p 226) proved that if n is an integer, n 2 and
0 < x < y < z are real numbers satisfying the equation

xn + yn zn (1)

then

z - v < - (2)
n

This result was rediscovered by G Towes [7], and then by D Zeithn [8]
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