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El Math Vol 43 Nr 3 Seiten 65-96 Basel Mai 1988

Ein bewegliches Tetraederpaar

Die Diagonalen der Seitenflächen eines Wurfeis bilden die Kanten zweier regulärer
Tetraeder T und T' Jede Kante von T hat einen gemeinsamen Mittelpunkt mit einer
Kante von T' Realisiert man beide Tetraeder als Kantenmodelle, wobei jede Kante
von T innerhalb der schneidenden Kante von T' verlauft - die Kantendicke werde
vernachlässigt —, so zeigt sich, dass T relativ zu T' von der beschriebenen Position
der «Stella octangula» aus beweglich ist, wie als erster der ungarische Student L Tompos

Jr im Jahr 1982 entdeckte In einer umfangreichen Arbeit [3] haben T Tarnai
und E Makai Jr gezeigt, dass die Relativbewegung T/T' drei in bestimmter Weise
verbundene zweiparametrige Bewegungsvorgange und vier Zwanglaufe umfasst Im
folgenden wird die Geometrie dieser Bewegungsvorgange untersucht und ausserdem
die bisher offen gebliebene Frage geklart, ob damit jede mögliche Lage von T relativ
zu T' erreicht wird

1. Bezeichnung

Seien A[, ,Af4 die Ecken und a[2, ,a'34 die Tragergeraden der Kanten A[A2,
A3A4 des regulären Tetraeders T' Wir suchen alle jene Positionen des zu T'
kongruenten Tetraeders T, in welchen jede der sechs Kanten von T mit genau einer Kante
von T' einen inneren Punkt gemein hat Diese Lagen sollen im folgenden zulassig
schneidend heissen
Sei T1 eine derartige Position und y eine Bewegung, die T' auf T1 abbildet Ist ^ die
Gruppe der 24 Deckbewegungen von T, so ist fur jedes ß e& auch das Produkt y ß
eine Bewegung mit T -» T1 Wir können y als jene eindeutig bestimmte Kongruenzabbildung

voraussetzen, bei der fur jedes 1 e {1, ,4} das Bild A\ y von A\ aus jener
Seitenfläche von T' herausragt, welche A\ gegenüberliegt Es schneidet dann jede
Kante von T' das Bild ihrer Gegenkante y ist ungleichsinnig, denn erscheint von A'4

aus die Durchlaufung der Punkte A\, A2, A3 positiv, so auch jene von A[ y, A2 y, A3 y
Die Punkte A4 und A'4 y liegen auf verschiedenen Seiten der Verbindungsebene von
A\ y,A2y,A'3y
Es wird sich zeigen, dass m der Nebenklasse y$ stets eine involutorische Bewegung
vorkommt, namhch entweder eine Geraden- oder eine Ebenenspiegelung
Wir wollen im folgenden den Abstand von je zwei Gegenkanten der Tetraeder T' und
T (Kantenlange des Ausgangswurfeis) auf 2 normieren Dann ist 2^ die gemein-



66 EL Math., Vol. 43, 1988

same Kantenlänge und 4/|/3 die Höhe. Mit T' werden zwei Koordinatensysteme
verbunden, deren Ursprung beidemale in der Tetraedermitte O liegt:
Die x-Achse des einen Systems y sei zu a'X2 parallel, die v-Achse parallel zu a'34. Es

kann (siehe Abb. 2)

A[ (f2,0,-l)y, A'2 (-f2,0,-l)y,
(1)

A'3 (0,]ß, l)y, A'4 (0,~]/2,l)y

vorausgesetzt werden.
Bei dem anderen Koordinatensystemf gehe die z-Achse durch A[. Die Ecke A'2 liege
in der Ebene y 0; also ist etwa (siehe Abb. 1 a)

(2)^i (0,0,V5)^, A'2 ^2yj >°>--fi)y

2. Zwangläufe

Die Betrachtung eines Modells der beweglichen Tetraeder zeigt die Existenz
zwangläufiger Relativbewegungen, bei welchen eine Flächenachse dreizählige
Symmetrieachse) von T ständig mit einer gleichartigen Achse von T' zusammenfällt. Zwangläufe

mit einer Fixgeraden heissen axiale Umschwünge.
Sei etwa die Ebene n von A2,A'39 A'4 horizontal und A[ über n gelegen. Wir drehen nun
das Basisdreieck um die z-Achse durch den Winkel <p bei 0 < q> < 2 n/3 (siehe Abb.
1 a). Dann ist das neue Dreieck als Grundriss eines wohlbestimmten horizontalen
Dreiecks B2B^B4 aufzufassen, dessen Seiten die «Mantelkanten» von T' schneiden.
Der Sinussatz ergibt für die z-Koordinate dieses Dreiecks die Proportion

(l/3-z):^ sinf:sin(^-«,),

somit

_ l TT \
(3)(3-z}/3)cos(j-p) 2.

Wir ergänzen das Dreieck B2B3B4 durch den unter n gewählten Punkt Bx zu einem
regulären Tetraeder T1. Aus Symmetriegründen müssen auch die Basiskanten von T'
die Mantelkanten von T1 schneiden. Der freien Wahl von <p entsprechend gehen diese
Positionen T1 bei einem (stetigen) Zwanglauf f ineinander über, nämlich bei dem
durch (3) definierten axialen Umschwung längs der z-Achse (Bewegungen 3. Art
nach [3]).
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Für die Koordinaten (x, y, z)j> einer Ecke des Dreiecks B2B3BA gilt neben der
Gleichung (3)

x 2 y}cos(, + ^) -2]/}cos(,--f)

Zusammen mit (3) folgt daraus

(4)

Die Bahnkurve dieser Ecke beim Zwanglauff (siehe Abb la) gehört einem
gleichseitigen hyperbolischen Zylinder an, dessen Achse durch A\ geht x 0 ist eine
asymptotische Ebene, der Zylinder enthalt die Gerade «34

Die zucp= n/3 gehörige Lage von T ist die stella-octangula-Position T°

Satz 1: Längs jeder dreizahligen Symmetrieachse von T' gibt es einen achsialen
Umschwung, bei dem das Gangtetraeder T stets zulassig schneidende Lagen einnimmt
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Die nichtgeraden Punktbahnen dieser Zwangläufe liegen auf Raumkurven 4. Ordnung,
1. Art, nämlich den Schnittkurven von Drehzylindern mit dazu normalen gleichseitigen
hyperbolischen Zylindern (siehe Abb. 1 b).

Für jede bei / erreichte Lage T1 gibt es drei Geradenspiegelungen, die T' mit T1

vertauschen. Die zugehörigen Spiegelungsachsen liegen in der Mitte zwischen der Basisebene

ti von T' und der Ebene B2B$B4 und sie schneiden die z-Achse. Sei ö diejenige
Gefadenspiegelung, bei welcher die Kante A'XA2 das Bild A3ÖA4Ö der Gegenkante
schneidet. Dann bildet die Achse d von ö (siehe Abb. 1 a) mit d£r x-Achse einen
Winkel vom Mass (p/2 + n/3. Die Koordinaten der Punkte von d können angesetzt
werden als

1

- r sin —
2 ,-|),,co.j(,-f)l(_-^

mit r e IR und z gemäss (3) und genügen daher der Gleichung

(x2 + f) + (l-z 1/3) (x2 - f) 0. (5)

Der Zwanglauf/ ist enthalten in der symmetrischen Schrotung (vgl. [2]) mit dem durch
(5) gegebenen geraden kubischen Konoid f als Grundregelfläche, f besitzt
orthogonale Torsalerzeugende in den Ebenen

z 0 bzw. z 2/1/5

und ferner drei reelle Ferngeraden.

3. Zweiparametrige Bewegungsvorgänge

Wir unterwerfen das Tetraeder T' der Spiegelung o in einer Ebene e, welche das

Eckenpaar A\ und A'2 vom Paar A^Ai trennt. Nun schneidet jede der Kanten
A'xA'i, A\A'4, A'2Af3, A'2Af4 das zugehörige Spiegelbild in einem inneren Punkt. Wie
muß e liegen, damit auch die beiden restlichen Kanten von T' Schnittpunkte mit
Kanten des Bildtetraeders T' o aufweisen? Da nur A\A'2 und A30A40 sowie A3A4 und

A\oA'2o diese Paare schneidender Kanten sein können und deren Schnittpunkte S{2

bzw. S34 einander in o entsprechen, ist e notwendig die Symmetrieebene von Punkten

S12 g «12 und S34 g a'34.

Wir lassen vorerst die aus der geforderten Lage von e folgenden Einschränkungen für
diese Kantenschnittpunkte ausser acht, verwenden das Koordinatensystem y und
setzen

S'x2 (u,0,-lU S_4=(0,->, l)y mit (m,i?)g1R2.

Die zugehörige Symmetrieebene s hat die Gleichung

2 u x - 2 vy - 4z - u2 + v2 0, (6)
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berührt daher das gleichseitige hyperbolische Paraboloid (siehe Abb 2)

W x2-y2-4z 0

im Punkt

P \u,i,

(7)

(8)

Spiegelt man den Rastraum I' an allen Tangentialebenen von W, so entstehen Lagen
des Gangraumes Z, die eine zweiparametrige symmetrische Rollung 0? mit der Grund-
flache W definieren (vgl [2] oder [1], Seite 80) Eine zu XP' kongruente Flache *P a E
rollt dabei derart auf W ab, dass W und W stets symmetrisch sind bezüglich der
Tangentialebene im Beruhrpunkt P Jede glatte Kurve c' auf V bestimmt als Ort der
Beruhrpunkte einen in @ enthaltenen Zwanglauf, eine einparametrige symmetrische
Rollung, deren Rastpolflache ist die W längs c' berührende Torse
Wählt man c' als Erzeugende von V (u - i konst oder u + v konst), so wird dieser

Zwanglauf zur stetigen Drehung von E um diese Erzeugende Die Drehungen um
die Scheitelerzeugenden von V, also die Kantenachsen z x - y 0 bzw z x + y 0

von T' heissen in [3] Bewegungen 1 Art
Fur c' cz W' als Parabel (au + bi= konst bei \a\i=\b\ und \a\ + \b\>0) entsteht

eine symmetrische Rollung parabolischer Zylinder Unter den durchwegs ebenen
Bahnkurven gibt es ein Parallelbuschel von Geraden Ist c' insbesondere ein Hauptschnitt

von V (u 0 bzw t 0), so haben zwei Ecken von T geradlinige Bahnen

(Bewegungen 2 Art nach [3])
Die Punktbahnen bei 3P sind erzeugbar, indem ein fester Punkt A' e E' an allen
Tangentialebenen von W gespiegelt wird Dieselbe Punktmenge entsteht, wenn man die
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Tangentialebenen von W zuerst an der in A' zentrierten Emheitskugel polarisiert,
dann invertiert und schliesslich die Bildpunkte aus A' noch mit dem Faktor 2 streckt
Die Punktbahnen bei & erweisen sich somit als zirkuläre kubische Flachen mit ihrem
Grundpunkt A' als zweifachem Punkt Jede Bahnflache enthalt die Fernerzeugende der
xy-Ebene sowie zwei durch A' gehende orthogonale Geraden, letztere sind Trager der
Büschel derjenigen Ebenen, in welchen die Bahnkreise bei den m & enthaltenen
stetigen Drehungen liegen
Hat A' die Koordinaten (<!;, n, C)y, so gilt fur den an der Ebene e aus (6) gespiegelten
Punkt A'o (x, y, z) /

l-u2 + v2 + 4 2ui 4w

\ 4w —4 t? uz + iz-4

Durch Elimination von u und t folgt daraus als Gleichung der zugehörigen
Bahnflache

2(x+y-i-rj)(x-y-i + rj)-(z-O(x2 + y2 + z2-e-rj2-C2) 0 (10)

Welcher Teil 3?z von & liefert die zulassig schneidenden Positionen des Gangtetraeders7

Da S[2 und S34 innere Punkte ihrer Kanten sein müssen, gilt fur die Parameter
u und 1

-f2<u,i<lfi
Der Punkt (w, t, 0)y in der xv-Ebene ist nach (8) Grundriss des Beruhrpunktes P der
Symmetrieebene e aus (6) mit dem Paraboloid W (vgl Abb 2) Damit wird der
Definitionsbereich in der (w,t)-Ebene von jenen vier, den Punkt (0,0) umschhessenden

Hyperbelbogen begrenzt, die den Grundrissen der Beruhrkurven der aus A[, ,A'4an
W legbaren Tangentialkegel angehören Also wird &z innerhalb & durch die folgenden

vier Ungleichungen gekennzeichnet

(u + ]/2)2 < 6 + i2, (t + p)2<6 + u2,

(u-]/2)2<6 + i2, (t - l^)2 < 6 + u2

Die Randzwanglaufe von &z sind sphärisch, die Rastpolachsen liegen auf den
genannten, übrigens orthogonalen Tangentialkegeln von W, die Punkte der Fokalgeraden

des Gangkegels laufen auf Grosskreisen

Satz 2: Es gibt drei zweiparametrige symmetrische Rollungen, bei welchen das
Gangtetraeder T stets zulassige Lagen einnimmt Die Grundflachen dieser Rollungen hegen

auf hyperbolischen Paraboloiden mit zweizahhgen Symmetrieachsen von T' als Scheitel-

erzeugenden Die zweiparametrigen Rollungen enthalten insbesondere stetige Drehungen
um die Erzeugenden dieser Paraboloide Die Bahnflachen der Ecken des bewegten Tetraeders

hegen aufzirkulären kubischen Flachen
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Abb. 3 zeigt die zum Grundpunkt A{ gehörige Bahn einer Ecke von T unter 3?z mit
den zwei Scharen von Bahnkreisbögen. Alle anderen Eckenbahnen sind dazu
kongruent.

Welche Lagen des Tetraeders T gehören gleichzeitig zwei verschiedenen zweipara-
metrigen Rollungen an? Angenommen, eine Lage von T entsteht aus T' durch die
Spiegelungen ax und a2 an zwei verschiedenen Ebenen ex bzw. e2, welche jeweils vier
Kanten von T' und T in inneren Punkten schneiden. Nun unterscheiden sich ox und
a2 durch eine Deckbewegung von T, etwa o2 ox ß. Damit ist ß= oxo2e^ eine
Drehung um eine Flächen- oder Kantenachse von T. Ersteres ist unmöglich, da ex und e2

keine Ecke von T enthalten dürfen. Somit sind ex und e2 orthogonale Ebenen durch
eine Kantenachse von T und T', also durch eine Scheitelerzeugende der zugehörigen
Grundparaboloide. Umgekehrt gehört die stetige Drehung um eine Kantenachse,
soweit sie zulässig schneidende Lagen liefert, zu zwei verschiedenen zweiparametrigen
symmetrischen Rollungen.
Welche Lagen von T werden gleichzeitig bei einem Zwanglauf aus Satz 1 und einer
Rollung aus Satz 2 erreicht? Nun gibt es analog ein ß= bo e&, wobei b eine
Geradenspiegelung ist, deren Achse eine Flächenachse von T' und T orthogonal schneidet. Die
Tetraedermitte O ist Fixpunkt von ß\ der Punkt Oö=Oo liegt auf der bei b

fixbleibenden Flächenachse. Bei ObirO wäre die Spiegelungsebene von a parallel zu
einer Seitenfläche von T', könnte also die vier Ecken von T' nicht paarweise trennen.
Also bleibt Ob O und damit Tb T°.
T° is gleichzeitig die einzige gemeinsame Lage von T bei zwei verschiedenen axialen
Umschwüngen, denn hier müssen zwei Flächenachsen von T mit solchen von T'
zusammenfallen.

Satz 3: Genau diejenigen T' zulässig schneidenden Lagen von T, die aus T° durch stetige
Drehung um eine Kantenachse von T' hervorgehen, werden bei zwei verschiedenen

zweiparametrigen symmetrischen Rollungen aus Satz 2 gleichzeitig erreicht.
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Hingegen ist T° die einzige gemeinsame Position bei zwei verschiedenen axialen
Umschwüngen gemäss Satz 1 oder auch bei einem axialen Umschwung und einer zweipara-
metrigen symmetrischen Rollung.

4. Bestimmung aller zulässig schneidenden Lagen von T

Sei T1 eine T' zulässig schneidende Lage des Gangtetraeders.

(i) Unter den 24 Bewegungen, die T' aufTx abbilden, gibt es genau eine mit der Eigenschaft,

dass die Kanten A'xAf3, A'XA'4, A2A'3 und A2A'4 von T' ihre Bildkanten schneiden.
Die restlichen Kanten schneiden das Bild derjeweiligen Gegenkante.
Diese Bewegung x is ungleichsinnig.

Beweis: x ist das Produkt der Bewegung y aus Abschnitt 1 und der Spiegelung an der
gemeinsamen Normalen von a'X2 y und a'34 y.

Jede ungleichsinnige Bewegung ist die Spiegelung an einer Ebene s oder das Produkt
dieser Ebenenspiegelung mit einer Translation parallel zu s (Gleitspiegelung) oder
mit einer Drehung um eine zu e normale Achse (Drehspiegelung), insbesondere im
Fall einer Halbdrehung eine Punktspiegelung. Welche dieser Möglichkeiten trifft nun
auf x aus (i) zu?
Offensichtlich kommen hierfür alle Spiegelungen an denjenigen Ebenen in Frage,
welche die Kanten A\A'39 A\A'4, A2A3, A'2A4 in inneren Punkten schneiden. Das liefert
genau die zum Gegenkantenpaar a'x2, a'34 gehörige zweiparametrige symmetrische
Rollung aus Satz 2.

Bei einer Punktspiegelung muss eine Gerade, die ihre Bildgerade im Endlichen
schneidet, durch das Spiegelungszentrum gehen. Hier kann die geforderte
Schnittbedingung für die vier Tetraederkanten nicht erfüllt werden. Dasselbe gilt für
diejenigen Gleitspiegelungen, welche keine reinen Ebenenspiegelungen sind. Ist nämlich
g eine Gerade, die ihre Bildgerade im Endlichen schneidet, so muss die durch g
legbare Normalebene zur Spiegelungsebene parallel zur Translationsrichtung verlaufen.
Nun gibt es aber keine Ebene, die zu allen vier Geraden a'X3, aU, a'23, a24 parallel ist.

(ii) Sei x eine nichtinvolutorische Drehspiegelung. Genau dann schneidet eine Gerade g
ihre Bildgerade gx oder ist dazu parallel, wenn g mit der Drehspiegelungsachse e eine in
der Spiegelungsebene e gelegene Normale gemein hat.

Beweis: Bei der stetigen Drehung um e überstreicht jede von e verschiedene Gerade g
ein einschaliges Drehhyperboloid, einen Drehkegel, einen Drehzylinder oder eine
Ebene <P. Das Bild gx liegt auf der zu 0 bezüglich e spiegelbildlichen Fläche <Px. Bei

0 =<Px sind g und gx schneidend oder parallel. Bei 0 ¥= <Px könnte ein Schnittpunkt
von g mit gx als Punkt von 0 n <Px nur in € oder in der Fernebene liegen. Damit
wäre er ein Fixpunkt von x; g enthielte den Schnittpunkt e n e oder den Fernpunkt
von e9 und damit wäre aber wieder 0 0x. Genau bei 0 0x gilt die in (ii)
genannte Normalenbedingung.
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(iii) Sei x T' -? Tx eine mchtinvolutonsche Drehspiegelung, bei welcher jede der
Geraden a'X3, «14, a'23, a'24 ihre Bildgerade schneidet oder dazu parallel ist Dann muss der
Fixpunkt E von x
a) aufeiner der Kantenachsen z x + y 0 oder z x — y 0 von T' hegen oder
b) aufeiner der Hyperbeln x 3y2 — 2 z2 — 4z 0 oder y 3x2 — 2z2 + 4z 0

Beweis Sei E= (£, r\, C)y Die Fusspunkte der Normalen aus E an die Geraden a'X3,

a'X4, a'23, #24 haben die Koordinaten

±(£-«-{1/2 + 21/2,-£ + « + 0/2 + 2 J/2, -£]/2 + n]f2 + 2Qy,

±(£ + n-tl/2 + 2l/2, Z + n-tl/2-2l/2,-il/2-«l/2 + 2t)s,

\(Z + n + i:f2-2f2, Z + n + tl/2 + 21/2, £lß+nl/2 + 2Qy,

±(Z-n + {;i/2-2l/29 -£ + »-(1/2-21/2, £l/2-nl/2 + 2Qy

Nach Auswertung einer Determinante zeigt sich, dass die in (n) geforderte Kompla-
nantat dieser vier Punkte äquivalent ist zu

£rjC 0

Bei 0 erhalt die Drehspiegelungsebene e die Gleichung

4(£x-rjy + 2z) £2-n2 (12)

Genau dann gehört auch E dieser Ebene an, wenn £2 - n2 0 gilt
Bei £ 0 erfüllen die Normalenfusspunkte die Gleichung

47v-4(C + 2)z-,/2 + 2C(C + 2) 0, (13)

ist zusätzlich n + 2 0, so fallen diese Punkte paarweise in A\ und A'2 zusammen
Die oben angegebene Hyperbel kennzeichnet den Fall, wo E mit den vier Normalen-
fusspunkten komplanar hegt
Der Fall rj 0 entsteht aus dem eben genannten nach einer Vertauschung der x- und
}>-Koordinaten und einem Vorzeichenwechsel der z-Koordinaten, der Spiegelung von
T' an der gemeinsamen Normalen von a'X3 und a'24 entsprechend

Bei den Drehspiegelungen x nach (in) a mit Fixpunkt E (£, £, 0)^ hat die Spiege-
lungsebene e nach (12) die Gleichung

£(x-y) + 2z 0

Die gemeinsame Normale n x — y z 0 von a'13 und a'24 inzidiert mit E und e,
dasselbe muss auch fur deren Bild nx gelten Das Produkt der Drehspiegelung x mit der
Spiegelung an dieser aj3x und a'24x treffenden Kantenachse nx von T'x= T1 ist eine
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Ebenenspiegelung o an einer zu e normalen Ebene durch E, wobei wegen (i) nun die
Kanten A[A'2, A'xAf3, A2A^, A3 A4 die zugehörigen Spiegelbilder schneiden. Alle
derartigen zulässig schneidenden Positionen von T sind im Satz 2 erfasst. Analoges gilt
für die zweite Vorzeichenwahl in (iii) a.

(iv) Zu jedem von O verschiedenen Punkt E der in (iii) b angegebenen Hyperbeln als

Fixpunkt gibt es höchstens zwei Drehspiegelungen x mit der in (i) geforderten Eigenschaft.

Beweis: Im ersten Fall ist

E=(0,n,Qs bei 3//2- 2C(C+ 2) 0

als Fixpunkt vorauszusetzen. Die Fixebene e hat bei n C + 2 0 die Gleichung
y 0, ansonsten nach (13)

2ny-2({ + 2)z + n2 0.

Die zu s normale Gerade e durch E ist die Drehspiegelungsachse von x.
Bei nO schneidet e die Gerade a'34 nichtorthogonal; a'34x liegt somit auf einem
Drehkegel mit der Drehachse e. Da a'x2 windschief zu e ist, gibt es höchstens zwei
Punkte, wo a'X2 das Bild a'34x bei einer geeigneten Drehspiegelung mit den Fixelementen

E, e, e schneiden könnte.
Bei n= C + 2 0 liegt a^x auf einem Drehzylinder, der von der Geraden aX2 zweimal
geschnitten wird. Der Fall E O ist bereits bei (iii) a mitbehandelt.
Die zweite Möglichkeit aus (iii) b verhält sich wieder völlig analog.
Nun bleibt zu zeigen, dass die zu (iii) b gehörigen zulässig schneidenden Lagen von T
alle schon mit Satz 1 erfasst sind: Bei den im Abschnitt 2 genannten Geradenspiegelungen

b, deren Achsen Erzeugende des Konoids f aus (5) sind, schneiden die
Geraden a\3, aU, a'23, a'24 die Bilder a'23b9 a'24b9 a'X3b9 aUb (vgl. Abb. la). Die gemäss (i)
zugehörige Bewegung x ist darstellbar als x= bß= ab\ dabei ist ße& die A[b mit
A2b vertauschende Ebenenspiegelung; o ist die Ebenenspiegelung an der Symmetrie-
ebene €12 von_4{ undA2.
Die Achse d von b ist niemals normal zu eX2\ dliegt nur dann in e12, wenn b die
Tetraedermitte O fixlässt, und das liefert die Lage T°. Bis auf diesen Fall ist x eine nicht-
involutorische Drehspiegelung mit d n eX2 als einzigem Fixpunkt. Alle diese
Fixpunkte bilden die um O verminderte Hyperbel in x 0 aus (iii) b, wie man auch
anhand (5) bestätigen kann.
Die restlichen axialen Umschwünge liefern in analoger Weise nichtinvolutorische
Drehspiegelungen, deren Fixpunkte auf genau einer der Hyperbeln aus (iii) b liegen.
Nach Satz 3 gibt es ausser T° keine gemeinsame Lage von T bei verschiedenen
Umschwüngen. Damit sind alle nach (iv) möglichen Lagen erfasst.

Satz 4: Ausser den Lagen des Gangtetraeders, die mit den axialen Umschwüngen aus
Satz 1 und den zweiparametrigen symmetrischen Rollungen aus Satz 2 erreicht werden,
gibt es keine T' zulässig schneidenden mehr. TT c_ __ _ -nT T «. •66 H. Stachel, TU Wien
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A new geometrie inequality

Let co e (0,n) be defined by the equation

COt CO COt OL i + COt 0L2 + COt 0L3 (1)

where olx, ct2, a3, are positive numbers satisfying

0LX + 0L2 + ol3 n (2)

If a,, a2 and a3 are interpreted as the three angles of a triangle (T)9 then co is called
the Brocard angle of (T) and there exists a number of identities relatmg co and olx a2
and ol3 [4] This note is concerned with the problem of finding inequahties between co

and ai, ol2 and a3 Since the appearance of [1], this problem has received much
attention At present the following inequahties are known [1-3]

1 n
2 co — (a i + a2 + a3) — (3)

This is the oldest known inequahty and follows from the inequahty cot2 co 3 which
is readily obtained from (1) The next inequahty is

2 co ]/olx a2a3 (4)

which was proved in [1] It is sharper than (3)
In [2] it was shown that

co3
___ (olx - co) (ol2 - co) (a3 - co), (5)

an inequahty that implies (4)
Using the method of Lagrange multiphers, Mascioni [5] proved the inequahty

2co^3(YJl/0Ll)-x (6)

This inequahty is sharper than (4), since the harmonic mean of three numbers is less

than or equal to their geometne mean A different proof of (6) appears in [3] Since
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