Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 43 (1988)

Heft: 3

Artikel: Ein bewegliches Tetraederpaar
Autor: Stachel, H.

DOl: https://doi.org/10.5169/seals-40802

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-40802
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires — Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

El. Math. Vol. 43 Nr.3 Seiten 65-96 Basel, Mai 1988

Ein bewegliches Tetraederpaar

Die Diagonalen der Seitenflichen eines Wiirfels bilden die Kanten zweier reguldrer
Tetraeder T und T’. Jede Kante von T hat einen gemeinsamen Mittelpunkt mit einer
Kante von T’. Realisiert man beide Tetraeder als Kantenmodelle, wobei jede Kante
von T innerhalb der schneidenden Kante von T’ verlduft — die Kantendicke werde
vernachlissigt —, so zeigt sich, dass T relativ zu T’ von der beschriebenen Position
der «stella octangula» aus beweglich ist, wie als erster der ungarische Student L. Tom-
pos Jr. im Jahr 1982 entdeckte. In einer umfangreichen Arbeit [3] haben T. Tarnai
und E. Makai Jr. gezeigt, dass die Relativbewegung T/T’ drei in bestimmter Weise
verbundene zweiparametrige Bewegungsvorginge und vier Zwanglaufe umfasst. Im
folgenden wird die Geometrie dieser Bewegungsvorgiange untersucht und ausserdem
die bisher offen gebliebene Frage geklart, ob damit jede mogliche Lage von T relativ
zu T’ erreicht wird.

1. Bezeichnung

Seien Ai, ..., A4 die Ecken und ai,, ..., aj4 die Trigergeraden der Kanten 47 43,...,
A5 A4 des regularen Tetraeders T’. Wir suchen alle jene Positionen des zu T’ kon-
gruenten Tetraeders T, in welchen jede der sechs Kanten von T mit genau einer Kante
von T’ einen inneren Punkt gemein hat. Diese Lagen sollen im folgenden zuldssig
schneidend heissen.

Sei T! eine derartige Position und y eine Bewegung, die T’ auf T'! abbildet. Ist # die
Gruppe der 24 Deckbewegungen von T, so ist fiir jedes f € # auch das Produkt y g
eine Bewegung mit T — T!. Wir kdnnen y als jene eindeutig bestimmte Kongruenz-
abbildung voraussetzen, bei der fiir jedes i € {1,..., 4} das Bild 4/ y von A aus jener
Seitenfliche von T’ herausragt, welche A; gegeniiberliegt. Es schneidet dann jede
Kante von T’ das Bild ihrer Gegenkante. y ist ungleichsinnig, denn erscheint von A4}
aus die Durchlaufung der Punkte A7, 4}, A} positiv, so auch jene von A7y, A}y, A5 .
Die Punkte A3 und A; y liegen auf verschiedenen Seiten der Verbindungsebene von
Ary, A2y, A3 7.

Es wird sich zeigen, dass in der Nebenklasse y# stets eine involutorische Bewegung
vorkommt, nimlich entweder eine Geraden- oder eine Ebenenspiegelung.

Wir wollen im folgenden den Abstand von je zwei Gegenkanten der Tetraeder T’ und
T (Kantenlidnge des Ausgangswiirfels) auf 2 normieren. Dann ist 2 V2 die gemein-
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same Kantenlinge und 4/V§ die Hohe. Mit T’ werden zwei Koordinatensysteme ver-
bunden, deren Ursprung beidemale in der Tetraedermitte O liegt:

Die x-Achse des einen Systems ./ sei zu aj, parallel, die y-Achse parallel zu a%4. Es
kann (siehe Abb. 2)

A= (2,0,-1),, A3=(=)2,0,-1),,

(1)
45=0,12,1),, 4i=0,-12,1),
vorausgesetzt werden.
Bei dem anderen Koordinatensystem 7 gehe die z-Achse durch 4{. Die Ecke 45 liege
in der Ebene y = 0; also ist etwa (siche Abb. 1a)

, i - |/_2_ 2
Al - (0’ 0, Vg)/s AZ - (2 3 ’ Oa V’g)}s (2)

2. Zwangliufe

Die Betrachtung eines Modells der beweglichen Tetraeder zeigt die Existenz zwang-
laufiger Relativbewegungen, bei welchen eine Fliachenachse (= dreizihlige Symme-
trieachse) von T stindig mit einer gleichartigen Achse von T’ zusammenfallt. Zwang-
laufe mit einer Fixgeraden heissen axiale Umschwiinge.

Sei etwa die Ebene 7 von A5, A3, A4 horizontal und A4} iiber n gelegen. Wir drehen nun
das Basisdreieck um die Z-Achse durch den Winkel ¢ bei 0 < ¢ < 27/3 (siche Abb.
la). Dann ist das neue Dreieck als Grundriss eines wohlbestimmten horizontalen
Dreiecks B,B;B4 aufzufassen, dessen Seiten die «Mantelkanten» von T’ schneiden.
Der Sinussatz ergibt fiir die Z-Koordinate dieses Dreiecks die Proportion

.4 . n . (5=n
(Vi—z).ﬁ—sm6.sm(6 q)),

somit
(3—21@)cos(—§——¢)=2. 3)

Wir ergdnzen das Dreieck B,B3;B4 durch den unter # gewédhlten Punkt B, zu einem
reguldren Tetraeder T!. Aus Symmetriegriinden miissen auch die Basiskanten von T’
die Mantelkanten von T! schneiden. Der freien Wahl von ¢ entsprechend gehen diese
Positionen T! bei einem (stetigen) Zwanglauf 2 ineinander iiber, nimlich bei dem
durch (3) definierten axialen Umschwung ldngs der Z-Achse (Bewegungen 3. Art
nach [3]).
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d
Figur l1a V}' Figur 1b

Fiir die Koordinaten (%, 7, Z) > einer Ecke des Dreiecks B,B3B, gilt neben der Glei-

chung (3)
2 2n 2 T
‘=2|/~— +—]=- I/——- -—].
% 3 cos((p 3 2 3 cos((p 3)

Zusammen mit (3) folgt daraus

2
(2—1F3>x=%f—. 4)

Die Bahnkurve dieser Ecke beim Zwanglauf 2 (siche Abb. 1a) gehort einem gleich-
seitigen hyperbolischen Zylinder an, dessen Achse durch 4] geht. ¥ = 0 ist eine asym-
ptotische Ebene; der Zylinder enthilt die Gerade aj,.

Die zu ¢ = n/3 gehorige Lage von T ist die stella-octangula-Position T°.

Satz 1: Ldngs jeder dreizihligen Symmetrieachse von T’ gibt es einen achsialen Um-
schwung, bei dem das Gangtetraeder T stets zuldssig schneidende Lagen einnimmit.
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Die nichtgeraden Punktbahnen dieser Zwangliufe liegen auf Raumkurven 4. Ordnung,
1. Art, ndmlich den Schnittkurven von Drehzylindern mit dazu normalen gleichseitigen
hyperbolischen Zylindern (siehe Abb. 1b).

Fiir jede bei ¥ erreichte Lage T! gibt es drei Geradenspiegelungen, die T’ mit T! ver-
tauschen. Die zugehorigen Spiegelungsachsen liegen in der Mitte zwischen der Basis-
ebene # von T’ und der Ebene B, B;B, und sie schneiden die Z-Achse. Sei 6 diejenige
Getadenspiegelung, bei welcher die Kante 4j45 das Bild 436446 der Gegenkante
schneidet. Dann bildet die Achse d von. é (siche Abb. 1a) mit der x-Achse einen
Winkel vom Mass ¢/2 + n/3. Die Koordinaten der Punkte von d konnen angesetzt
werden als

[rang{o-3) e {o-3) 3 -75))

mit r € R und 7 gemass (3) und geniigen daher der Gleichung
@+ +A-2)3) F -5 =0. (5)

Der Zwanglauf 3 ist enthalten in der symmetrischen Schrotung (vgl. [2]) mit dem durch
(5) gegebenen geraden kubischen Konoid I'’ als Grundregelfidche. I'’ besitzt ortho-
gonale Torsalerzeugende in den Ebenen

z=0 bzw. z=2/)3

und ferner drei reelle Ferngeraden.

3. Zweiparametrige Bewegungsvorgiinge

Wir unterwerfen das Tetraeder T’ der Spiegelung o in einer Ebene ¢, welche das
Eckenpaar A{ und A5 vom Paar A3, 47 trennt. Nun schneidet jede der Kanten
A1A5, AjA,, A5A5, A5A4 das zugehorige Spiegelbild in einem inneren Punkt. Wie
muB} ¢ liegen, damit auch die beiden restlichen Kanten von T’ Schnittpunkte mit
Kanten des Bildtetraeders T’ ¢ aufweisen? Da nur 4745 und AjcAs0 sowie A344 und
AjoA50 diese Paare schneidender Kanten sein konnen und deren Schnittpunkte Si,
bzw. Sj4 einander in o entsprechen, ist ¢ notwendig die Symmetrieebene von Punk-
ten S|; € aj; und Si € ai,.

Wir lassen vorerst die aus der geforderten Lage von ¢ folgenden Einschrankungen fir
diese Kantenschnittpunkte ausser acht, verwenden das Koordinatensystem . und
setzen

Siy=,0,-1),, Si4=(0,v,1), mit (u,v) € R%
Die zugehorige Symmetrieebene ¢ hat die Gleichung

2ux—2vy—4z—ut+v2=0, (6)
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Figur 2

beriihrt daher das gleichseitige hyperbolische Paraboloid (siehe Abb. 2)

Yix2—3y?—4z=0 (7
im Punkt
w2 — 2
P= 0, A 8
(uL . )/ ®)

Spiegelt man den Rastraum 2’ an allen Tangentialebenen von ¥, so entstehen Lagen
des Gangraumes X, die eine zweiparametrige symmetrische Rollung # mit der Grund-
fldche ¥’ definieren (vgl. [2] oder [1], Seite 80). Eine zu ¥’ kongruente Fliche ¥ =« X
rollt dabei derart auf ¥’ ab, dass ¥ und ¥’ stets symmetrisch sind beziiglich der Tan-
gentialebene im Beriihrpunkt P. Jede glatte Kurve ¢’ auf ¥’ bestimmt als Ort der Be-
rihrpunkte einen in # enthaltenen Zwanglauf, eine einparametrige symmetrische Rol-
lung; deren Rastpolflache ist die ¥’ lings ¢’ beriihrende Torse.

Wihlt man ¢’ als Erzeugende von ¥ (u — v = konst. oder u + v = konst.), so wird die-
ser Zwanglauf zur stetigen Drehung von 2 um diese Erzeugende. Die Drehungen um
die Scheitelerzeugenden von ¥’, also die Kantenachsen z=x—y=0bzw. z=x+y=0
von T heissen in [3] Bewegungen 1. Art.

Fir ¢’ c ¥’ als Parabel (au+bv=Xkonst. bei |a|# |b| und |a|+ |b|> 0) entsteht
eine symmetrische Rollung parabolischer Zylinder. Unter den durchwegs ebenen
Bahnkurven gibt es ein Parallelbiischel von Geraden. Ist ¢’ insbesondere ein Haupt-
schnitt von ¥’ (u=0 bzw. v =0), so haben zwei Ecken von T geradlinige Bahnen
(Bewegungen 2. Art nach [3]).

Die Punktbahnen bei # sind erzeugbar, indem ein fester Punkt 4’ € 2’ an allen Tan-
gentialebenen von ¥’ gespiegelt wird. Dieselbe Punktmenge entsteht, wenn man die
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Tangentialebenen von ¥’ zuerst an der in A’ zentrierten Einheitskugel polarisiert,
dann invertiert und schliesslich die Bildpunkte aus 4’ noch mit dem Faktor 2 streckt.
Die Punktbahnen bei # erweisen sich somit als zirkulare kubische Flichen mit ihrem
Grundpunkt A’ als zweifachem Punkt. Jede Bahnflache enthilt die Fernerzeugende der
xy-Ebene sowie zwei durch 4’ gehende orthogonale Geraden; letztere sind Triger der
Biischel derjenigen Ebenen, in welchen die Bahnkreise bei den in # enthaltenen ste-
tigen Drehungen liegen.

Hat A’ die Koordinaten (&, », )., so gilt fiir den an der Ebene ¢ aus (6) gespiegelten
Punkt 4’0 = (x, y, 2) ,

42— 2 u 1 —uw?+v2+4 2uv 4u &
—_— -y | 2 ) 2 _ 2 —_ ) .
2+oi+4 v W uv  u-—ov°+4 4v nl]. 9

X
yil=
z -2 4u -4y wr+2-4/\¢
Durch Elimination von u und v folgt daraus als Gleichung der zugehorigen Bahn-
flache

20 +y=E-mx—y=¢+M-E-OP+y+2 - -7 = (H=0. (10

Welcher Teil #, von # liefert die zuldssig schneidenden Positionen des Gangtetra-
eders? Da S{, und S3% innere Punkte ihrer Kanten sein miissen, gilt fiir die Parameter
uund v

-2 <u,0<}2.

Der Punkt (u, v, 0), in der xy-Ebene ist nach (8) Grundriss des Beriihrpunktes P der
Symmetrieebene ¢ aus (6) mit dem Paraboloid ¥’ (vgl. Abb. 2). Damit wird der De-
finitionsbereich in der (u,v)-Ebene von jenen vier, den Punkt (0,0) umschliessenden
Hyperbelbogen begrenzt, die den Grundrissen der Berithrkurven der aus 41, ..., 4 an
¥’ legbaren Tangentialkegel angehdren. Also wird #, innerhalb # durch die folgen-
den vier Ungleichungen gekennzeichnet:

(u+)2)<6+0v% (+)2)2<6+u?

(11)
w—-12)2 <6+ (@—)2)2<6+u’

Die Randzwangldufe von #, sind sphirisch; die Rastpolachsen liegen auf den ge-
nannten, iibrigens orthogonalen Tangentialkegeln von ¥’; die Punkte der Fokalgera-
den des Gangkegels laufen auf Grosskreisen.

Satz 2: Es gibt drei zweiparametrige symmetrische Rollungen, bei welchen das Gang-
tetraeder T stets zuldssige Lagen einnimmt. Die Grundflichen dieser Rollungen liegen
auf hyperbolischen Paraboloiden mit zweizdhligen Symmetrieachsen von T’ als Scheitel-
erzeugenden. Die zweiparametrigen Rollungen enthalten insbesondere stetige Drehungen
um die Erzeugenden dieser Paraboloide. Die Bahnflichen der Ecken des bewegten Tetra-
eders liegen auf zirkularen kubischen Fldchen.
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Figur 3

Abb. 3 zeigt die zum Grundpunkt A] gehorige Bahn einer Ecke von T unter %, mit
den zwei Scharen von Bahnkreisbogen. Alle anderen Eckenbahnen sind dazu kon-
gruent.

Welche Lagen des Tetraeders T gehdren gleichzeitig zwei verschiedenen zweipara-
metrigen Rollungen an? Angenommen, eine Lage von T entsteht aus T’ durch die
Spiegelungen g, und o, an zwei verschiedenen Ebenen ¢ bzw. ¢;, welche jeweils vier
Kanten von T’ und T in inneren Punkten schneiden. Nun unterscheiden sich ¢, und
g, durch eine Deckbewegung von T, etwa g, = g; . Damit ist = 0, 6, € # eine Dre-
hung um eine Fldchen- oder Kantenachse von T. Ersteres ist unmoglich, da ¢; und e,
keine Ecke von T enthalten diirfen. Somit sind ¢; und ¢, orthogonale Ebenen durch
eine Kantenachse von T und T’, also durch eine Scheitelerzeugende der zugehérigen
Grundparaboloide. Umgekehrt gehort die stetige Drehung um eine Kantenachse, so-
weit sie zuldssig schneidende Lagen liefert, zu zwei verschiedenen zweiparametrigen
symmetrischen Rollungen.

Welche Lagen von T werden gleichzeitig bei einem Zwanglauf aus Satz 1 und einer
Rollung aus Satz 2 erreicht? Nun gibt es analog ein f = do € 4, wobei § eine Geraden-
spiegelung ist, deren Achse eine Flichenachse von T’ und T orthogonal schneidet. Die
Tetraedermitte O ist Fixpunkt von f; der Punkt Od= Ooc liegt auf der bei ¢ fix-
bleibenden Flachenachse. Bei O # O wire die Spiegelungsebene von ¢ parallel zu
einer Seitenfliche von T’, konnte also die vier Ecken von T’ nicht paarweise trennen.
Also bleibt 0 = O und damit T’§ = TO.

TY is gleichzeitig die einzige gemeinsame Lage von T bei zwei verschiedenen axialen
Umschwiingen, denn hier miissen zwei Flachenachsen von T mit solchen von T’ zu-
sammenfallen.

Satz 3: Genau diejenigen T’ zuldssig schneidenden Lagen von T, die aus T° durch stetige
Drehung um eine Kantenachse von T’ hervorgehen, werden bei zwei verschiedenen zwei-
parametrigen symmetrischen Rollungen aus Satz 2 gleichzeitig erreicht.
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Hingegen ist T® die einzige gemeinsame Position bei zwei verschiedenen axialen Um-
schwiingen gemdss Satz 1 oder auch bei einem axialen Umschwung und einer zweipara-
metrigen symmetrischen Rollung.

4. Bestimmung aller zuliissig schneidenden Lagen von T
Sei T! eine T’ zulissig schneidende Lage des Gangtetraeders.

(i) Unter den 24 Bewegungen, die T’ auf T' abbilden, gibt es genau eine mit der Eigen-
schaft, dass die Kanten A{Aj, A1A4, A3A5 und A5A4 von T’ ihre Bildkanten schneiden.
Die restlichen Kanten schneiden das Bild der jeweiligen Gegenkante.

Diese Bewegung x is ungleichsinnig.

Beweis: x ist das Produkt der Bewegung y aus Abschnitt 1 und der Spiegelung an der
gemeinsamen Normalen von aj, y und a4 ».

Jede ungleichsinnige Bewegung ist die Spiegelung an einer Ebene ¢ oder das Produkt
dieser Ebenenspiegelung mit einer Translation parallel zu ¢ (Gleitspiegelung) oder
mit einer Drehung um eine zu ¢ normale Achse (Drehspiegelung), insbesondere im
Fall einer Halbdrehung eine Punktspiegelung. Welche dieser Moglichkeiten trifft nun
auf x aus (i) zu?

Offensichtlich kommen hierfiir alle Spiegelungen an denjenigen Ebenen in Frage,
welche die Kanten 41435, AjA4, A543, A5A4 in inneren Punkten schneiden. Das liefert
genau die zum Gegenkantenpaar aj,, a3 gehorige zweiparametrige symmetrische
Rollung aus Satz 2.

Bei einer Punktspiegelung muss eine Gerade, die ihre Bildgerade im Endlichen
schneidet, durch das Spiegelungszentrum gehen. Hier kann die geforderte Schnitt-
bedingung fiir die vier Tetraederkanten nicht erfiillt werden. Dasselbe gilt fiir die-
jenigen Gleitspiegelungen, welche keine reinen Ebenenspiegelungen sind. Ist namlich
g eine Gerade, die ihre Bildgerade im Endlichen schneidet, so muss die durch g leg-
bare Normalebene zur Spiegelungsebene parallel zur Translationsrichtung verlaufen.
Nun gibt es aber keine Ebene, die zu allen vier Geraden ais, ai4, a53, a4 parallel ist.

(ii) Sei » eine nichtinvolutorische Drehspiegelung. Genau dann schneidet eine Gerade g
ihre Bildgerade g» oder ist dazu parallel, wenn g mit der Drehspiegelungsachse e eine in
der Spiegelungsebene ¢ gelegene Normale gemein hat.

Beweis: Bei der stetigen Drehung um e iiberstreicht jede von e verschiedene Gerade g
ein einschaliges Drehhyperboloid, einen Drehkegel, einen Drehzylinder oder eine
Ebene @. Das Bild gx liegt auf der zu @ beziiglich ¢ spiegelbildlichen Flache @x. Bei
® =dx sind g und gx schneidend oder parallel. Bei @ + & x konnte ein Schnittpunkt
von g mit gx als Punkt von @ N @x nur in ¢ oder in der Fernebene liegen. Damit
wire er ein Fixpunkt von x%; g enthielte den Schnittpunkt e N ¢ oder den Fernpunkt
von e, und damit wire aber wieder @ = ®x Genau bei @ = Py gilt die in (ii)
genannte Normalenbedingung.
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(iii) Sei x: T’ > T! eine nichtinvolutorische Drehspiegelung, bei welcher jede der Ge-
raden ai3, al4, as3, ay ihre Bildgerade schneidet oder dazu parallel ist. Dann muss der
Fixpunkt E von x

a) auf einer der Kantenachsen z = x +y =0 oder z= x — y = 0 von T’ liegen oder
b) auf einer der Hyperbeln x =3y?—2z>~4z=0o0dery=3x>—2z*+4z=0.

Beweis: Sei E = (&, , {),,. Die Fusspunkte der Normalen aus E an die Geraden ajs,
ais, ays, as haben die Koordinaten

T (E—n=C0V2+2V2, —E+n+LV2+2V2, —EV2+n)V2+20).,
T E+n—0V2+212, E+n-0V2-212, -&V2-n)2+20).,
T (E+n+LV2-2V2, E+q+0)2+212, EV2+4)2+20).,
T E—n+0V2-2V2, —E+n-0V2-2)2, &V2-n)2+20)..

Nach Auswertung einer Determinante zeigt sich, dass die in (ii) geforderte Kompla-
naritdt dieser vier Punkte dquivalent ist zu

¢n{=0.
Bei { = 0 erhilt die Drehspiegelungsebene ¢ die Gleichung
4€x—ny+22)=¢ -y (12)

Genau dann gehért auch E dieser Ebene an, wenn &2 — 52 = 0 gilt.
Bei ¢ = 0 erfiillen die Normalenfusspunkte die Gleichung

dny—4(¢+2)z-n+2{(+2)=0; (13)

ist zusitzlich n = { + 2 =0, so fallen diese Punkte paarweise in 4] und 45 zusammen.
Die oben angegebene Hyperbel kennzeichnet den Fall, wo E mit den vier Normalen-
fusspunkten komplanar liegt.

Der Fall n =0 entsteht aus dem eben genannten nach einer Vertauschung der x- und
y-Koordinaten und einem Vorzeichenwechsel der z-Koordinaten, der Spiegelung von
T’ an der gemeinsamen Normalen von aj; und a4 entsprechend.

Bei den Drehspiegelungen x nach (iii) a mit Fixpunkt E = (¢, £, 0), hat die Spiege-
lungsebene ¢ nach (12) die Gleichung

((x—y)+2z=0.

Die gemeinsame Normale n: x — y = z = 0 von a}, und 4}, inzidiert mit E und ¢; das-
selbe muss auch fiir deren Bild nx gelten. Das Produkt der Drehspiegelung » mit der
Spiegelung an dieser aj;x und aj4x treffenden Kantenachse nx von T’x = T! ist eine
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Ebenenspiegelung o an einer zu ¢ normalen Ebene durch E, wobei wegen (i) nun die
Kanten A{A43, A{A3, A3A44, A5A; die zugehorigen Spiegelbilder schneiden. Alle der-
artigen zuldssig schneidenden Positionen von T sind im Satz 2 erfasst. Analoges gilt
fiir die zweite Vorzeichenwahl in (iii) a.

(iv) Zu jedem von O verschiedenen Punkt E der in (iii) b angegebenen Hyperbeln als
Fixpunkt gibt es hochstens zwei Drehspiegelungen » mit der in (i) geforderten Eigen-
schaft.

Beweis: Im ersten Fall ist
E=(0,170)., bei 3n°~=20((+2)=0

als Fixpunkt vorauszusetzen. Die Fixebene ¢ hat bei n={+2=0 die Gleichung
y =0, ansonsten nach (13)

2ny—2(+2)z+n>=0.

Die zu ¢ normale Gerade e durch E ist die Drehspiegelungsachse von x.

Bei # 0 schneidet e die Gerade ajs nichtorthogonal; ajy» liegt somit auf einem
Drehkegel mit der Drehachse e. Da a}; windschief zu e ist, gibt es hochstens zwei
Punkte, wo aj; das Bild ajsx bei einer geeigneten Drehspiegelung mit den Fixelemen-
ten E, e, ¢ schneiden konnte.

Bei #={ + 2 =0 liegt a3, x auf einem Drehzylinder, der von der Geraden aj, zweimal
geschnitten wird. Der Fall E = O ist bereits bei (iii) a mitbehandelt.

Die zweite Moglichkeit aus (iii) b verhilt sich wieder vollig analog.

Nun bleibt zu zeigen, dass die zu (iii) b gehorigen zuldssig schneidenden Lagen von T
alle schon mit Satz 1 erfasst sind: Bei den im Abschnitt 2 genannten Geradenspiege-
lungen J, deren Achsen Erzeugende des Konoids I"" aus (5) sind, schneiden die Ge-
raden ajs, als, ay, as die Bilder a3 d, ajd, aj3d, ajsd (vgl. Abb. 1a). Die gemiss (i)
zugehorige Bewegung x ist darstellbar als x= 6 = g §; dabei ist f € die A]d mit
A3 6 vertauschende Ebenenspiegelung; o ist die Ebenenspiegelung an der Symmetrie-
ebene &), von A7 und A3.

Die Achse d von § ist niemals normal zu ¢),; d liegt nur dann in ¢, wenn J die Tetra-
edermitte O fixlisst, und das liefert die Lage T°. Bis auf diesen Fall ist » eine nicht-
involutorische Drehspiegelung mit d n ¢, als einzigem Fixpunkt. Alle diese Fix-
punkte bilden die um O verminderte Hyperbel in x = 0 aus (iii) b, wie man auch an-
hand (5) bestitigen kann.

Die restlichen axialen Umschwiinge liefern in analoger Weise nichtinvolutorische
Drehspiegelungen, deren Fixpunkte auf genau einer der Hyperbeln aus (iii) b liegen.
Nach Satz 3 gibt es ausser T? keine gemeinsame Lage von T bei verschiedenen Um-
schwiingen. Damit sind alle nach (iv) moglichen Lagen erfasst.

Satz 4: Ausser den Lagen des Gangtetraeders, die mit den axialen Umschwiingen aus
Satz 1 und den zweiparametrigen symmetrischen Rollungen aus Satz 2 erreicht werden,
gibt es keine T’ zuldssig schneidenden mehr. H. Stachel. TU Wien
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A new geometric inequality

Let w€(0, ) be defined by the equation

cotw = cotoy + cota, + cotos (1)
where o, a5, a3, are positive numbers satisfying

G+ toz=7. (2)

If o, a; and a3 are interpreted as the three angles of a triangle (T'), then w is called
the Brocard angle of (T') and there exists a number of identities relating w and «;, o,
and o5 [4]. This note is concerned with the problem of finding inequalities between w
and o), oy and o3. Since the appearance of [1], this problem has received much
attention. At present the following inequalities are known [1-3].

1 n
2w§-§—(fxl+a2+a3)=?. (3)

This is the oldest known inequality and follows from the inequality cot? w = 3 which
is readily obtained from (1). The next inequality is

20w = i/oq oy 03 4)

which was proved in [1]. It is sharper than (3).
In [2] it was shown that

@ = (0, — 0) (a3~ w) (03— ), )

an inequality that implies (4).
Using the method of Lagrange multipliers, Mascioni [5] proved the inequality

20=30Q 1/a)7". (6)

This inequality is sharper than (4), since the harmonic mean of three numbers is less
than or equal to their geometric mean. A different proof of (6) appears in [3]. Since
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