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Zahlreiche Eigenschaften von E findet man in [5—7], [10] und in der dort zitierten
Literatur.

Gould und Mays [4] haben gezeigt, dass die einzigen Mittelwerte, die sowohl
E(r,s; x,y) als auch L,(x, y) angehoren, das arithmetische, das geometrische und das
harmonische Mittel von x und y sind.

Der Redaktion mochte ich fiir Verbesserungsvorschldge herzlich danken.

Horst Alzer, Waldbrol
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Kleine Mitteilung

Sums of a certain family of series

By identifying the sum
S -"il( e 1 (mer={1,2,3,...}) (1)
v k | 2¥(n+k+1) T
with the integral
1 t n—1
s,,=j(1——) o dt, @)
0 2

and evaluating this Eulerian integral, M. Vowe and H.-J. Seiffert [3] have recently
shown that

_2"(n—-p!nt 27"
o (@2n)! n
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In our attempt to find the sum in (1), without evaluating the integral in (2), we are led
naturally to the fact that the formula (3) is just one of numerous interesting (and

useful) consequences of a known result in the theory of the Gaussian hypergeometric
series

ab z a(@a+1)b(b+1) z?
@b =1+="-7 clc+1) 2! )

which, for a=1 and b = ¢ (or, alternatively, for a = ¢ and b =1), reduces immediately

to the familiar geometric series. In one of his 1836 memoirs [1], Ernst Eduard Kummer
(1810—1893) proved the summation theorem [1, p. 134, Theorem 3]:

rls)
5 (=

where, as usual, I" (z) denotes the familiar Gamma function satisfying the relation-
ships:

F(a,l—a;c;%)*-= (c#0,—-1,-2,..), 4)

lF(z+1)=zF(z), Valr (2z)=22"'Ir' () I (z+1/2), "
Frn+l)=n! (nesrui0), r1/2)=Vya ©)

(see also Srivastava and Karlsson [2, pp. 18 —19]).
From the definition

(A)=1_ (A)= AA=1)...A—k+1)
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for an arbitrary (real or complex) 4, it follows readily that

(,1+k—-1)=z(,1+1)...(/1+k—1) ke ul0)). 8)

k k!

Making use of (8), and the second relationship in (6), it is fairly easy to state
Kummer’s summation theorem (5) in the (more relevant) form:
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Since (u#0,-1,-2,..).

~1
("k ):0, k=nmn+l,n+2,..., (10)
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the sum in (9) would terminate at kK =n —1 in the special case when A=ne.#". In
particular, we have

n—1 _
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and
n—1 1 2"
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Formula (11) is an obvious consequence of the familiar binomial theorem:
% [n
> (k) kp"—k=(a+b)" ey ui0)), (14)
k=0
or, more generally,
e8]

> (i) zk=(1+2)* (|z|<]1; Aarbitrary), (15)
k=0

which incidentally is related to (4) with a =— A, b = ¢, and z replaced by — z.
Formulas (12) and (13), together, yield
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which is precisely the summation formula (3) given by Vowe and Seiffert [3].
It is not difficult to deduce from (9) the following generalization of (3):
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which holds true for an essentially arbitrary (real or complex) A.
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Some further consequences of the general result (9) are worthy of note. Indeed, for
every non-negative integer /, we obtain
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where, as usual, an empty product is to be interpreted as 1.
Upon subtracting (18) from (19) with / replaced by / — 1, we find that
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which evidently yields (17) when /= 1.
Each of the summation formulas (18), (19), and (20) would terminate, by virtue of
(10), in its special case when 1 = n € .#". Formula (20) thus yields
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which provides us with yet another generalization of the summation formula (3).

H. M. Srivastava, Department of Mathematics, University of Victoria, Canada
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Aufgaben

Aufgabe 957. Man beweise die Ungleichung

sin(x/2) + cosx <(m—x)/2; O0<x<m.
P. Ivady, Budapest, Ungarn

Losung. Fiir 0 < x < & gilt nach einer bekannten Identitit

sin(x/2) + cos x = 2sin((m — x)/4) cos((3x — m)/4)
< 2sin((m — x)/4)
<(m—x)/2.
A. A. Jagers, Enschede, NL

Weitere Losungen sandten S. Arslanagic (Trebinje, YU), A. Bender (Ziirich), H. Bopp
(Illingen), E. Braune (Linz, A), P. Bracken (Toronto, CD), P. Bundschuh (K6ln, BRD), F.
Gotze (Jena, DDR), M. Hiibner (Leipzig, DDR), W. Janous (Innsbruck, A), L. Kuipers
(Sierre), Kee-wai Lau (Hongkong), I. Merenyi (Berveni, RU), A. Miiller (Ziirich), P.
Miiller (Niirnberg, BRD), H.-J. Seiffert (Berlin), Tsen-Pao Shen (Miinchen, BRD), H. M.
Smid (Amsterdam, NL), M. Vowe (Therwil), R. Wyss (Flumenthal).

Aufgabe 958. Es seien

=3 (gt L[ e e Lfn—1
x,,.-k;( 1) lk(k) und y,,.-kgl( 1) 1k(k—1)'

Man berechne: lim (x, + logy,).

n—* oo

H. Alzer, Waldbrél, BRD
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