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Zahlreiche Eigenschaften von E findet man in [5-7], [10] und in der dort zitierten
Literatur
Gould und Mays [4] haben gezeigt, dass die einzigen Mittelwerte, die sowohl

E(r, s, x,y) als auch Lr(x,y) angehören, das arithmetische, das geometrische und das
harmonische Mittel von x und y sind

Der Redaktion mochte ich fur Verbesserungsvorschlage herzlich danken

Horst Alzer, Waldbröl
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Kleine Mitteilung
Sums of a certain family of series

By identifying the sum

n-l n-l\ 1

with the integral

S, j(l-4V '("dt, (2)'¦-!('"T
and evaluating this Eulerian integral, M Vowe and H -J SeifTert [3] have recently
shown that

2n(n-lVn* 2~n
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In our attempt to find the sum in (1), without evaluating the integral in (2), we are led
naturally to the fact that the formula (3) is just one of numerous interesting (and
useful) consequences of a known result in the theory of the Gaussian hypergeometric
series

F(a,b;c\z) l + -—— + —— -^7 + ---> (4)
c 1! c(c + l) 2!

which, for a 1 and b c (or, alternatively, for a c and b l), reduces immediately
to the familiär geometrie series. In one of his 1836 memoirs [1], Ernst Eduard Kummer
(1810-1893) proved the summation theorem [1, p. 134, Theorem 3]:

F(a,\-a;c;\)= ,v
2 } 2 ' (c ¥=0,-1,-2,...), (5)

c- a + lW)
where, as usual, r (z) denotes the familiär Gamma function satisfying the relation-
ships:

lr(z + i) zr(z), für(2z) 22*~xr(z)r(z+i/2),
\r(n + l) n\ (nsyKv {0}),r(1/2) "fz U

(see also Srivastava and Karlsson [2, pp. 18 -19]).
From the definition

for an arbitrary (real or complex) A, it follows readily that

U + k-l\ A(A + l)...(A + /c-l)
k\ (keJ^Kj{0}). (8)

Making use of (8), and the second relationship in (6), it is fairly easy to State

Kummer's summation theorem (5) in the (more relevant) form:

U + k-l\
^sZo(-0*( k )2klß + k-i\- u + x\ //i^a + iT (9)

Since (^0,-1,-2,...).

'
=0, k n, n + l, n + 2,..., (10)
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the sum in (9) would terminate at k n -1 in the special case when A n e jK. In
particular, we have

Sn,n=lVl)*(V)2-* 2'-» (»6^).

and

1

k + l)

OD

*-o \ * / 2"(n + k) (2«)!

(13)

Formula (11) is an obvious consequence ofthe familiär binomial theorem:

Yl \akbn~k=(a + b)n (neJ^u{0})9 (14)
* 0 W

or, more generally,

f r\zk=(l + z)k (|z|<l; Aarbitrary), (15)

which incidentally is related to (4) with a - A, b c, and z replaced by - z.
Formulas (12) and (13), together, yield

(16)sn^sn,n,x-sntn+2 Yl(-iA\1)-^
*__o \ k 2k(n +

2n(n -l)lnl 2~n
— (n e JK),

(2n)\ n
v 7'

which is precisely the summation formula (3) given by Vowe and Seiffert [3].
It is not difficult to deduce from (9) the following generalization of (3):

£ (-iWM .___£__________)_2__ tt^o-i-2
*-o \ kJ2k(X + k + l) r(2X + l) X (^°' !* 2,-)'

(17)

which holds true for an essentially arbitrary (real or complex) X.
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Some further consequences of the general result (9) are worthy of note. Indeed, for
every non-negative integer /, we obtain

1

s"«-l.(-,)'(1:1)^?
2k~[[V + k+j-l)

.-i (18)

2i--/j- (A*0,-l,-2,...)
(2 0! üa +7-1)

J-i
and

$U + 2/+i Yl (-!)*(* l) —TT-1 (19)
k=o \ * i 2*na+*+7)

7=0

2Ar(A)T(A + / + l)
/!T(2A + 2/+l) (A#0,-l,-2,...),

where, as usual, an empty product is to be interpreted as 1.

Upon subtracting (18) from (19) with / replaced by / - 1, we find that

i ,_,,./*-.) __j^_______ (20)
Ä: 0 2*na + *+y-i)

7=1

________ pUl (/e^).(/-i)ir(ji + 2/-i) (2i)inci+J_I)
7=1

which evidently yields (17) when / 1.

Each of the summation formulas (18), (19), and (20) would terminate, by virtue of
(10), in its special case when A n e jK. Formula (20) thus yields

t-o \ * / 2* jj(#| + fc+_,-_!)

2"(«-l)!(n + /-l)! 2'-"/!
_ («,/e^r),„-„!(2„ + 2,-2,( ^ ,„,,._„

7 1

which provides us with yet another generalization ofthe summation formula (3).

H. M. Srivastava, Department of Mathematics, University of Victoria, Canada
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Aufgaben

Aufgabe 957. Man beweise die Ungleichung

sin (x/2) + cosx < (tc — x)/2; 0 < x < n
P. Ivady, Budapest, Ungarn

Lösung. Für 0 < x < 7i gilt nach einer bekannten Identität

sin (x/2) + cosx 2sin((.r — x)/4) cos((3x — n)/4)

<2sin((n-x)/4)
<(tz- x)/2

A. A. Jagers, Enschede, NL

Weitere Lösungen sandten S. Arslanagic (Trebinje, YU), A. Bender (Zürich), H. Bopp
(Illingen), E. Braune (Linz, A), P. Bracken (Toronto, CD), P. Bundschuh (Köln, BRD), F.
Götze (Jena, DDR), M. Hübner (Leipzig, DDR), W. Janous (Innsbruck, A), L. Kuipers
(Sierre), Kee-wai Lau (Hongkong), I. Merenyi (Berveni, RU), A. Müller (Zürich), P.

Müller (Nürnberg, BRD), H.-J. Seiffert (Berlin), Tsen-Pao Shen (München, BRD), H. M.
Smid (Amsterdam, NL), M. Vowe (Therwil), R. Wyss (Flumenthal).

Aufgabe 958. Es seien

'•:=J,,-i,,*,K*)und '¦¦'k(-'r"ik-\
Man berechne: lim (x„ 4- log vn).

n-*ao

H. Alzer, Waldbröl, BRD
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