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Uber Lehmers Mittelwertfamilie

Gegenstand dieser Note ist die fiir positive x und y sowie fiir reelle Parameter r
definierte Mittelwertfamilie

r+1 r+1

Xty

Lr(x,y) = x,+y,.

b4

die die drei klassischen Mittelwerte:

xX+y
2 2
das geometrische Mittel:  L_;,(x,y)=)xy und

das arithmetische Mittel:  Loy(x,y) =

2xy
xX+y

das harmonische Mittel:  L_;(x,y) =

enthilt. Von H. W. Gould und M. E. Mays [4] ist fiir L, die Bezeichnung Lehmer Mittel
gewihlt worden. Zahlreiche interessante Eigenschaften von L, findet man in [1-4], [8].
Die einparametrige Funktionenschar L, (x, y) ist ein Spezialfall der im Jahre 1938 von
C. Gini [3] fir positive xy,..., x, sowie fiir reelle Parameter » und s eingefiihrten
Mittelwertfamilie

n

n 1/(r-s)
G(r,s;xl,...,xn)=[2x§/z x;‘-] fir r=+s,
i=1

i=1

G(r,r;Xy,..., Xp) = €Xp [ > xilog(x)/ Y x?} )
i=1

i=1

Bemerkenswert ist eine vor kurzem von D. Farnsworth und R. Orr [2] veroffentlichte
Note iiber Gini Mittel, in der unter anderem gezeigt wird, wie sich das Lehmer Mittel
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L,(x,y)=G(r+1,r,x,y) fir ganzzahlige Parameter r geometrisch interpretieren
lasst.

Unser Ziel ist es, einige neue Ungleichungen fiir L, zu beweisen. Wir beginnen mit
dem Beweis zweier Hilfssdtze. Zunichst zeigen wir, in welchen Intervallen die Funk-
tionen L,(x, y) und log L,(x, y) beziiglich r konvex bzw. konkav sind.

Lemma 1. Wenn x und y positive Zahlen sind mit x # y, dann ist die Funktion
L(r)=L,(x,y) in Ry streng konvex und in R§ streng konkav sowie in (— oo, —1/2]
logarithmisch streng konvex und in [— 1/2, o0) logarithmisch streng konkav.

Beweis. 1. Zweimalige Differentiation von L ergibt:

bon_ ) ogx/y)?

L) ==y 00 =),
Hieraus folgt:

L"(n>0 fir r<0 und

L"(r)<0 fir r>0.

2. Wir bezeichnen mit f die Funktion

f(r)=log L,(x,y).

Dann folgt nach einigen einfachen Rechnungen:

(xy)"(log X/J’)z 2r+l _ y2r+1) .

f”(r) = (xr+yr)2(xr+l +yr+l)2 (y_..x) (x

somit erhalten wir:

f"(nN>0 fir r<-1/2
und

(<0 fir r>-1/2. O

Weiter bendtigen wir folgenden (bekannten) Satz iiber konvexe Funktionen (vgl.
[9, p. 16]):

Lemma 2. Wenn / = R ein beliebiges Intervall und f: I = R eine streng konvexe
Funktion ist, dann gilt fiiralle r, s, e Imit r<s < .

=9 f)+ (=0 f()+—nf(H)>0. (D
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Beweis. Da f in I streng konvex ist, gilt fiir alle reellen a € (0, 1):

far+(—-a)H)<af(rn+1—-a)f(r). 2)

Wenn wir in (2) s=ar+ (1 —a) ¢ einsetzen und anschliessend beide Seiten von (2)
mit ¢ — r multiplizieren, dann folgt (1). O

Wir setzen nun x ¥ y voraus; nach Lemma 1 erfiillen die vier Funktionen
fl (r) =Lr(x,y) in ]Ro_,
fZ(r)=-Lr(xsy) in ]Ra-s
gi1(r) =log L,(x,y) in (—o0,-1/2] und
gZ(r ="10g L,(X,y) in [_ 1/2’ w)

die Voraussetzungen von Lemma 2. Somit gilt:

Satz1. Es seien r,s und ¢ reelle Zahlen sowie x und y positive Zahlen. Wenn
r<s<t=0,dann gilt:

(t=5) L (x,p) + (r—= 1) Ly(x,y) + (s —r) Li(x, ) = 0. 3)

Falls 0 = r < s < t, dann muB in (3) das Zeichen ,,=* durch ,,=“ ersetzt werden.
Wenn r < s < t = — 1/2, dann gilt:

(L e, MY L e M) L, P = 1. 4)

Falls — 1/2 = r < s < t,dann muB in (4) das Zeichen ,,=z*“ durch ,,=* ersetzt werden.
In allen Fillen gilt das Gleichheitszeichen genau dann, wenn x = y.

AbschlieBend wollen wir ein Gegenstiick zu Satz 1 beweisen. Hierzu benétigen wir eine
Ungleichung, die von E. M. Wright [11] im Jahre 1956 veroffentlicht wurde:

Lemma 3. Wenn 7/ < R ein beliebiges Intervall und f: I - R* eine monotone oder
konvexe Funktion ist, dann gilt fiir alle Zahlen r, 5, ¢ € I die Ungleichung

(r=8)(r=0f(N+E-nNE=DfEO+-ri-3) f(H=0. &)

Das Gleichheitszeichen gilt in (5) genau dann, wenn r = s = .

Auf Grund von
d _ (x»)log(x/y) (x—y)
i L.(x,y)= 4 ) =0

ist L,(x, y) und folglich auch log L, (x, y) beziiglich r in R monoton steigend. Vgl. [1].
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Weiter gilt:
Wemn x,yz 1, x+y(bzw.0 <x,y =1, x * y),dann L,(x, y) > 1 (bzw. L,(x,y) < 1);
wenn 0 <y<1<x oder 0 <x <1<y, dann

1_
L(x,y)>1 < r>log y/log—x—.
x—1 y

Somit erfiillen die Funktionen
f() =L,(x,y) R,
gi(rn=logL,(x,r) (mit x,y=1l,x*y) inR,
gi(r)=logL,(x,y) Mmit0<y<l<xoder 0<x<1<y)

l—y/ X )
log—, o0
x—1 y

gr(nN=—logL,(x,y) (mit 0<x,y=1,x*¥ypy) inR

im Intervall (log
und

die Voraussetzungen von Lemma 3 und wir erhalten:

Satz 2. Es seien r, s und ¢ reelle Zahlen sowie x und y positive reelle Zahlen. Dann gilt:
r=5)r—=0L.(x,»)+E—rE—=0)L(x,»)+(@=r)(t—5) L(x,y) =0.

Wenn x, y = 1, x ¥ y, dann gilt:

[L 6, DIE9ICD L, DI Ly (3, )] = 1. ©)

Wenn0 < y< 1< xoder0 < x <1 < y,dann gilt (6), falls

) 1-
min(r, s, t) > log 4 / logi.
x| y

Wenn 0 < x,y = 1, x + y, dann muB in (6) das Zeichen ,,=* durch ,,=* ersetzt werden.

Das Gleichheitszeichen gilt in allen Fillen genau dann, wennr =s=1.

Bemerkung. Die von K. B. Stolarsky [10] fiir positive x und y (mit x # y) und fiir reelle
Parameter  und s (mit » * s, rs #+ 0) definierte Mittelwertfamilie

roxs— ys ]]/(s—r)

E(r,S;x,y)'—-[; vy

steht auf Grund von
G(r,s;x,9)=[EQr,2s;x, )I¥E(r,s; x,¥)

in Beziehung zu Ginis Mittelwertfamilie G.
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Zahlreiche Eigenschaften von E findet man in [5—7], [10] und in der dort zitierten
Literatur.

Gould und Mays [4] haben gezeigt, dass die einzigen Mittelwerte, die sowohl
E(r,s; x,y) als auch L,(x, y) angehoren, das arithmetische, das geometrische und das
harmonische Mittel von x und y sind.

Der Redaktion mochte ich fiir Verbesserungsvorschldge herzlich danken.

Horst Alzer, Waldbrol
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Kleine Mitteilung

Sums of a certain family of series

By identifying the sum
S -"il( e 1 (mer={1,2,3,...}) (1)
v k | 2¥(n+k+1) T
with the integral
1 t n—1
s,,=j(1——) o dt, @)
0 2

and evaluating this Eulerian integral, M. Vowe and H.-J. Seiffert [3] have recently
shown that

_2"(n—-p!nt 27"
o (@2n)! n

S, (neA). 3
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