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Über Lehmers Mittelwertfamilie

Gegenstand dieser Note ist die für positive x und y sowie für reelle Parametern
definierte Mittelwertfamihe

xr+x+yr+x
Lr(x,y)=—rr~7~'x+y

die die drei klassischen Mittelwerte:

x+ydas arithmetische Mittel: L0 (x, y)

das geometrische Mittel: L.x/2(x,y) fx~y und

2xy
das harmonische Mittel: L_ x (x, y)

x + y

enthält. Von H. W. Gould und M. E. Mays [4] ist fürLr die Bezeichnung Lehmer Mittel
gewählt worden. Zahlreiche interessante Eigenschaften von Lr findet man in [1-4], [8].
Die einparametrige Funktionenschar Lr(x,y) ist ein Spezialfall der im Jahre 1938 von
C. Gini [3] für positive xx,...,x„ sowie für reelle Parameterr und s eingeführten
Mittelwertfamilie

G(r,s,xx,...,xn) YlxvYlx*
i-i i-i

l/(r-s)
für r + s,

G(r,r,xx,...,xn) exp txrtlog(xt) txr,
,=_! / l=_i

Bemerkenswert ist eine vor kurzem von D. Farnsworth und R. Orr [2] veröffentlichte
Note über Gini Mittel, in der unter anderem gezeigt wird, wie sich das Lehmer Mittel
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Lr(x, y) G(r+ 1, r,x,y) für ganzzahlige Parametern geometrisch interpretieren
lässt.

Unser Ziel ist es, einige neue Ungleichungen für Lr zu beweisen. Wir beginnen mit
dem Beweis zweier Hilfssätze. Zunächst zeigen wir, in welchen Intervallen die
Funktionen Lr(x, y) und log Lr(x, y) bezüglich r konvex bzw. konkav sind.

Lemma 1. Wenn x und y positive Zahlen sind mit x + y, dann ist die Funktion
L(r) Lr(x,y) in Rö streng konvex und in RJ streng konkav sowie in (— oo, —1/2]
logarithmisch streng konvex und in [- 1/2, oo) logarithmisch streng konkav.

Beweis. 1. Zweimalige Differentiation von L ergibt:

(xy)r(logx/y)2
(xr + yr)3L"(r)=

V

;„;, *
3 (y-x)(xr-yr).

Hieraus folgt:

L"(r)>0 für r<0 und

L"(r)<0 für r>0.

2. Wir bezeichnen mitf die Funktion

/(r) logL-(.x,v).

Dann folgt nach einigen einfachen Rechnungen:

(Xy)r(lOg X/y)2 ..w,.2r+l ..2r+K.
(xr + yr)2(xr+x+yr+x)2rw= ,„,;:A:„Zi. ,+1,2 o^h*2"1-^*1);

somit erhalten wir:

f"(r)>0 für r<-l/2
und

f"(r)<0 für r>-l/2. D

Weiter benötigen wir folgenden (bekannten) Satz über konvexe Funktionen (vgl.

[9,p.l6]):

Lemma 2. Wenn / c R ein beliebiges Intervall und /: / -» R eine streng konvexe

Funktion ist, dann gilt für alle r,s9tel mit r < s < t:

(t-s)f(r) + (r-t)f(s) + (s-r)f(t) > 0. (1)
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Beweis. Da fini streng konvex ist, gilt für alle reellen a e (0,1):

f(ar + (1 -a)t)< af(r) + (l - a) f(t). (2)

Wenn wir in (2) s ar + (l - a) t einsetzen und anschliessend beide Seiten von (2)
mit t - r multiplizieren, dann folgt (1). D

Wir setzen nun x + y voraus; nach Lemma 1 erfüllen die vier Funktionen

fx(r) Lr(x9y) in Rö,

f2(r) -Lr(x,y) in Rj,

g! (r) log Lr(x,y) in (- oo, -1 /2] und

g2 (r) _ log Lr (x, y) in [- 1 /2, oo)

die Voraussetzungen von Lemma 2. Somit gilt:

Satz 1. Es seien r, s und t reelle Zahlen sowie x und v positive Zahlen. Wenn

r<.</_i0, dann gilt:

(t - s) Lr(x9 y) + (r- t) Ls(x, y) + (s- r) Lt(x, y)^0. (3)

Falls 0 ___ r < s < t, dann muß in (3) das Zeichen „^" durch „_ti" ersetzt werden.
Wenn r < s < t _s - 1/2, dann gilt:

[Lr(x,y)]'-*[Ls(x,ylT'lLtix, y)}'"^ 1
• (4)

Falls - 1/2 __. r < s < t, dann muß in (4) das Zeichen „=" durch „___" ersetzt werden.
In allen Fällen gilt das Gleichheitszeichen genau dann, wenn x y.

Abschließend wollen wir ein Gegenstück zu Satz 1 beweisen. Hierzu benötigen wir eine

Ungleichung, die von E. M. Wright [11] im Jahre 1956 veröffentlicht wurde:

Lemma 3. Wenn / c R ein beliebiges Intervall und /: / -> R+ eine monotone oder
konvexe Funktion ist, dann gilt für alle Zahlen r,s,tel die Ungleichung

(r-s)(r-t)f(r) + (s-r)(s-t)f(s) + (t-r)(t-s)f(t) 0. (5)

Das Gleichheitszeichen gilt in (5) genau dann, wenn r s t.

Auf Grund von

d (xy)r\og(x/y)(x-y)
JrL'iX>y)- (?T7P

ist Lr(x,y) und folglich auch log Lr(x9y) bezüglich r in R monoton steigend. Vgl. [1].
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Weiter gilt:
Wenn x, y i__ 1, x + y (bzw. 0 < x,y _i 1, x + y), dann Lr(x,y) > 1 (bzw. Lr(x,y) < 1);
wenn 0 < v < 1 < x oder 0 < x < 1 < v, dann

1 -y ILr(x,y) > 1 <=> r > log——-/log-

Somit erfüllen die Funktionen

f(r) =Lr(x,y) inR,

gx (r) log __.-(*, r) (mit x, v _?_ 1, x + y) in R,

gx (r) log Lr(x, v) (mit 0 < v < 1 < x oder 0 < x < 1 < v)

im Intervall I log ——— / log —, 00

und \ x-\l yM3A
#2 (>*) -log Z.r(x,>>) (mit 0<x,j>__i l,x+y) inR

die Voraussetzungen von Lemma 3 und wir erhalten:

Satz 2. Es seien r, s und / reelle Zahlen sowie x und v positive reelle Zahlen. Dann gilt:

(r-s)(r- t) Lr(x,y) + (s-r)(s-t) Ls(x,y) + (t-r)(t-s) Lt(x,y) i_ 0.

Wenn x, y 1, x + y, dann gilt:

[Lr(x, y)]l'-'nr-0 [L5(x, y)]l'-'n>-0 [Lt(x,y)]«-W-* =1. (6)

Wenn 0 < v < 1 < x oder 0 < x < 1 < y, dann gilt (6), falls

min(r, s, t) > log /log —.x- 1 / >>

Wenn 0 < x, y __i 1, x 4= y, dann muß in (6) das Zeichen „_?_" durch ,,_^" ersetzt werden.

Das Gleichheitszeichen gilt in allen Fällen genau dann, wenn r — s — t.

Bemerkung. Die von K. B. Stolarsky [10] für positive x und v (mit x+y) und für reelle
Parameter r und s (mit r + s, rs + 0) definierte Mittelwertfamilie

E(r,s;x,y)

steht auf Grund von

r x*

s xr — yr

l/(s-r)

G(r,s;x,y) [E(2r92s;x,y)]2/E(r,s,x,y)

in Beziehung zu Ginis Mittelwertfamilie G.



54 El Math, Vol 43,1988

Zahlreiche Eigenschaften von E findet man in [5-7], [10] und in der dort zitierten
Literatur
Gould und Mays [4] haben gezeigt, dass die einzigen Mittelwerte, die sowohl

E(r, s, x,y) als auch Lr(x,y) angehören, das arithmetische, das geometrische und das
harmonische Mittel von x und y sind

Der Redaktion mochte ich fur Verbesserungsvorschlage herzlich danken

Horst Alzer, Waldbröl
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Kleine Mitteilung
Sums of a certain family of series

By identifying the sum

n-l n-l\ 1

with the integral

S, j(l-4V '("dt, (2)'¦-!('"T
and evaluating this Eulerian integral, M Vowe and H -J SeifTert [3] have recently
shown that

2n(n-lVn* 2~n
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