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Generalization of a formula of C. Buchta
about the convex hüll of random points

1. Introduction

For an arbitrary convex body K in the d-dimensional Euchdean space Ed (d 2) we
denote by Vjd) (K) the expected volume of the convex hüll Hn of n random points chosen

independently and uniformly inside K. The special case Vj2)(K) is directly related to a
classical problem of geometrical probability, known as «Sylvester's problem»:

What is the probability p(K) that 4 points chosen identically and uniformly at
random from the interior of a plane convex set K form a convex quadrilateral?

It is easy to see [6], pp. 63-64, that

p(K) l-j^V^(K), (1.1)

where F(K) is the area of K.
For further results and a complete list of references concerning the convex hüll of random
points and Sylvester's problem, see the recent survey of Buchta [2].

For arbitrary plane convex sets, respectively three-dimensional convex bodies, Buchta [1]

proves the following relationships

Vl2)(K) 2V™(K) (1.2)

and

V™(K) \Vf)(K). (1.3)

The aim of this note is to generalize Buchta's formulas (1.2) and (1.3) in the following
sense:

Theorem 1. Let K be an arbitrary plane convex set. Then

m-1
V&)(K)= £ a2m_2, + 1^»_2t + 1 (K) m 2,3,..., (1.4)

fc=l

where a2m_2k + i are constants defined by the recursion formula

a2m-i=w, (1.4')

m |Y 2m - 1 \ *-1 2m - 2t + 1 (2m - 2i\ 1

^2kTil\2m-2k)~ ^ 2m \2m-2k)a2m-2i + iy*2m~2k+1~2m-2k+l

for fc 2,3,...,m-l. (1.4")
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Theorem 2. Let K be an arbitrary three-dimensional convex body. Then

m-1

eiW=_L-„t2e„+2W m 2,3,..., (1.5)
fc=l

where ß2m-2k + 2 are constants defined by the recursion formula

_
m(2m + l)

Plm-lk + 2
(2m -2k + l) (2m -2k+ 2)

2m - 1 \ *__l (2m - 2i + 1) (2m - lx + 2) /2m - 2 A
2m - 2k) " ,?i 2m(2m+\) \2m - 2k) ß2m~2i + 2

for k 2,3,..., m-1. (1.5")

2. Proof of Theorem 1

We can assume that F(K) 1 since, under an affine transformation, the expected area
Vni2)(K) changes only through F(K).
Renyi and Sulanke [5], p. 76, show that

&?li(K) (" 2 0 U1^'1 + (1 " ^n~^dP^dP2 • C2-1)

where Ej^^A.) is the expected number of vertices of the convex hüll Hn+1 of n + 1

random points J^, P2,..., 2^+1 chosen independently and uniformly inside K, and
F F(P1? P2) denotes the area of the smaller of the two parts of K eut off by the line
through Pt and P2.

Efron [4], p. 335, relates the expected volume V^d)(K) ofthe convex hüll Hn to the expected
number of vertices Elflx(K) ofthe convex hüll H_+1 by the following formula

VV(K) l--^—E$rl(K). (2.2)
n + l

Using (2.2) expression (2.1) becomes

V™(K) 1 -~ JJ[Fnl +(1 -Ff-']dPldP2. (2.3)
-S KK

Consider now our formula (1.4)

V£(K) a2m.t V&lt(K) + + 0L2m_2k+i V£l2k + i(K) + + a3 V^(K). (2.4)
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Taking into account (2.3) we obtain

1 - m J J [F2™-1 + (1 - F)2""1]^ dP2

41

«2«-ih

+ + 0L2 n-2k+l I
2m — 2k + 1 ~_

1 J J [F2m-2fc + (1 _ F)2m-2&]^ rfp +
Z. KK

+ + <x3(l -1 J J [F2 +(1 -PfMdpX (2.5)

or, by developing the integrands,

«2_-i(l-(2m-l)JJ F2m-2dP1dP2-
\ KK

11_[2,1»3 (^r2)^1^*]^^)2m- +

+ ••• + o_„-2_ + i(l -(2m-2fc + 1) JJ Flm-lkdPxd?2-
\ KK

2m-2k + \
w ¦2m-2k-l/2m-2k\, -

__ (-l)'F'
1 0 V i

+ + _,(l -3 JJPdPtdP2-l JJ[-2F + i]<U\dp\
\ KK Z KK J

dP1dP2\ +

(2.6)

Comparing the coefficients of J J Fl dP1 dP2 (i 0,1,..., 2m — 2) in (2.6) we get
KK

ml2m-2J==(2w-1)a2'-1' (2.7)

2m- l\ 2m-1/2m-2
2m-2k

2m-1

2m-2k a2m_i + + (2m-2/c + l)a2m_2k + 1,

2^Hw-l, (2.8)

2m-lt 2m-2
2m-2k-\)~ 7

2m — 2k
+ ..- + 7T-

2m-2k-l)(*2m-1 +

+1 / 2m - 2/c \
_ ^ ^-(2m-2k-lJa— 1^^"1 <*»
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and

_
2m-3 2m-2k + l 1

m-1 =—-—oc2m_x + + a2m_2fc + 3 + + -a3. (2.10)

From (2.7) and (2.8) we easily conclude that

a2m_1 m (2.11)

and

m
X2m-2k + l ~

2m-2k+l
2m- l\ *__* 2m-2i + l /2m-2i\
Im - 2k) ~ ,?_ 2n\ \2m - 2k)a2m~2i + 1

2^k^m-l, (2.12)

in accordance with (1.4') and (1.4").

Finally, expressions (2.9) and (2.10) can be verified by an adequate addition of the
constants defined by (2.12).

3. Proof of Theorem 2

Analogously to the proof of Theorem 1 we can assume the volume V(K) of the convex
body K to be 1 since, under an affine transformation, the expected volume V^3)(K)
changes only through V(K).
Renyi and Sulanke's integral expression (2.1) can be extended to higher dimensions. For
the three-dimensional case we can State

fii\ («)=(n t*) J f f [p""2+<* - ?r2i^dp*dp* - c3-1)

\ J /KKK

where F*l\(K) is the expected number of faces of the convex hüll Hn + i and
V V(Pl9P2, P3) denotes the volume of the smaller of the two parts of K eut off by the

plane through Pl9 P2 and P3 (e.g. Buchta [1], p. 155).

With probability 1 all faces of Hn+1 will be triangles. Therefore, taking into aecount
expression (3.1), Efron's formula (2.2) and Euler's theorem, we conclude

K»(K) 1 - -L- -^i^ J J J [V-2 + (1 - Vf-2]dP, dP2dP3. (3.2)
n+l IZ kkk

To prove Theorem 2 we use the same procedure as above. We now consider formula (1.5)

K£>+1(K) ß2mV£(K) + + ß2m-2k + 2 V£lu + 3(K) + + ß4 Vl»(K). (3.3)
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Taking into account expression (3.2) we obtain

2m+ 2

2m(2m + l)fI|[f2m_1+(i_f)2m,1]^^Jp3
IZ KKK

=^-(i-^rr-(2m J)2mnnv2m'2+a-v)2m-2]dpldp2dp3)+
zm + 1 12 KKK

2 (2m - 2k+ 1) (2m-2k+ 2)
+ ••• + /?2m-2* + 2

1 - 2m-2k+ 3 12

J J J [p2«-2* + (1 _ ^)2»«-2fcj jp^p^p^ +
KKK

+ + ß4[l-l-3-£SM[V2 + (l-V)2]dP1dP2dP3),
-> 12 ______

(3.4)

or, by developing the integrants,

2 2m(2m + l)
__XJ_2m+ 2 12

2 2(2m-l)2m

2^2/2m-l iT' \dPl dP,dP,=

ß2m(l
2m + 1

(2m-l)2m
12

jjfr2"£3f2mr2>)(-irHdpidp^p3
KKK L * 0 \ * / J

+ + ß2m-2k + 2
1 -

r3/ +

2(2m-2/c + l)(2m-2/c + 2)

2m-2k + 3

WlV^-^dP.dP.dP,-
KKK

12

(2m-2fc + l)(2m-2/c + 2)

12

-r-...-h^fl -|-2JJJF2^P1^P2^P3- JJJ[-2F+1]^P1^P2^P3). (3.5)
\ *> KKK KKK /

Comparing the coefficients of J J j V1 dPl dP2 dP3 (i 0,1,..., 2m - 2) in (3.5) we get
KKK

2m(2m + 1) /2m - l\_ 2(2m - l)2m
12 \2m - 2)= 12~

#2m> (3.6)

2m(2m + 1) / 2m - 1 \ (2m - l)2m / 2m - 2

+ +

12 \2m-2kJ 12 \2m - 2k

2(2m - 2k + l)(2m - 2k + 2)

/*2m +

12
02m-2* + 2 for /c 2,3,...,m-1, (3.7)
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2m(2m + l)( 2m - 1 \_(2m-l)2m/ 2m - 2 \
12 \2m -2k-\)~~ 12 \2m -2k-l) ßlm +

(2m-2/c + l)(2m-2/c + 2)/ 2m-2k \
+ '•• +

12 \2m - 2k - l) ß^~2k+2

for k l,2,...,m-l (3.8)

and

2 2m(2m + l) / 2 _(2m-l)2m\
~2m + 2 12 "V ~2m + l 12 J^ +

/ 2 (2m-2fe + l)(2m-2/c + 2)^+ -* +
V 2m-2fc + 3 12 )P2m-u+2 +

+ + (l-l-l\ßA. (3.9)

From (3.6) and (3.7) we easily conclude that

Ä.«^ (3-10)

and

m(2m + 1)
ß:2m-2k + 2 (2m-2k + l)(2m-2k + 2)

(2m-l \_k~1 (2m - 2i + 1) (2m - 2i + 2) (2m - 2i\ 1

\2m - 2k) ~
2m(2m + l) \2™ - 2k) ß2m~2i + 2j

for fc 2,3,...,m-l, (3.11)

in accordance with (1.5') and (1.5").

Finally, expressions (3.8) and (3.9) can be verified by an adequate addition ofthe constants
defined by (3.11).

4. Some remarks

Remark 1. For m 2 expressions (1.4) and (1.5) become

Vl2)(K) 2V™(K) and V™(K) f F4(3)(K),

coincident with Buchta's formulas (1.2) and (1.3).
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Remark 2. Some numerical values for the planar case:

Vl2\K) 2V?\K),
V™(K) 3V™(K)-5V™(K),
V£2)(K) 4K7(2)(K) - 14K5(2)(J_) + 28 V™(K),

V$(K) 5K9<2)(__) - 30F7(2,(__) + 126K5<2>(J_) - 255Vj2)(K).

Remark 3. Some numerical values for the three-dimensional case:

K5<3>(K) §K4<3>(__),

V^(K) lVi3\K)-fVi3\K),
V™{K) f V£3)(K) - 21 K6<3,(X) + 63 F4(3)(K).

Remark 4. Recently, again Buchta [3], p. 96, generalizes his results (1.2) and (1.3) to
higher dimensions. For an arbitrary „-dimensional convex body he shows that

Remark 5. Unfortunately, the procedure to relate the expected volume V^d)(K), d 2,3,
of the convex hüll of n random points to the integral expressions (2.3) and (3.2) cannot
be extended to higher dimensions. Therefore it seems to be difficult to generahze our
results to higher dimensions.

Fernando Affentranger
Department of Mathematics

University of Buenos Aires
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