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Generalization of a formula of C. Buchta
about the convex hull of random points

1. Introduction

For an arbitrary convex body K in the d-dimensional Euclidean space E%(d = 2) we
denote by V¥ (K) the expected volume of the convex hull H, of n random points chosen
independently and uniformly inside K. The special case Vi?(K) is directly related to a
classical problem of geometrical probability, known as «Sylvester’s problem»:

What is the probability p(K) that 4 points chosen identically and uniformly at
random from the interior of a plane convex set K form a convex quadrilateral?

It is easy to see [6], pp. 6364, that

P(K) =1 — —— V(K), (L.1)

where F(K) is the area of K.

For further results and a complete list of references concerning the convex hull of random
points and Sylvester’s problem, see the recent survey of Buchta [2].

For arbitrary plane convex sets, respectively three-dimensional convex bodies, Buchta [1]
proves the following relationships

VO (K) = 2V42(K) (12)
and

VE(K) = $VO(K). (1.3)

The aim of this note is to generalize Buchta’s formulas (1.2) and (1.3) in the following
sense:

Theorem 1. Let K be an arbitrary plane convex set. Then
m-—1
Vi2(K)= X %om-zk+1 Vam-2x+1(K) m=23..., (1.4)
k=1

where a,,,_ 5+, are constants defined by the recursion formula

Comey =, (1.4)

m 2m—1 "i12m——2i+1 2m — 2i .
Yam-2kt1 = o 1 \am—2k) T E T 2m Im— 2k ) Fem-2itt |

for k=2,3,....m—1. (1.4")



40 El Math,, Vol. 43, 1988

Theorem 2. Let K be an arbitrary three-dimensional convex body. Then
m—1
Vi2(K) = T famoaiea Vi ena®)  m=23,..., (1.5)

1

where fB,,,_ .k +» are constants defined by the recursion formula

__2m+1
=—

Bom (1.5)

8 _ m(2m+ 1) .
o2k T om—2k+1)(2m—2k + 2)

2m—1 "il(2m—2i+1)(2m—2i+2) 2m — 2i 8
2m -2k} & 2m(2m + 1) 2m —2k)Am A2

for k=2,3,....,m—1. ‘ (1.5%)

2. Proof of Theorem 1

We can assume that F(K) = 1 since, under an affine transformation, the expected area
V3 (K) changes only through F(K).
Rényi and Sulanke [5], p. 76, show that

n+1

Ef,%zl(K)=( ! );{ [P+ @~ Fytar,ap,, 1)

where E?, (K) is the expected number of vertices of the convex hull H,,, of n + 1
random points P, P, ..., P,,, chosen independently and uniformly inside K, and
F = F(P,, P,) denotes the area of the smaller of the two parts of K cut off by the line
through P, and P,.

Efron [4], p. 335, relates the expected volume V¥ (K) of the convex hull H, to the expected
number of vertices E), (K) of the convex hull H,, , by the following formula

1
VOK) =1 - —— B4, (K). 2.2)

Using (2.2) expression (2.1) becomes

VAOK)=1—2 [[[F"*+(1 — F)y* ']dP,dP,. (2.3)
KK

N

Consider now our formula (1.4)

Vz(;%:)(K) = Qypm—1 V2(3|)~1(K) oot Ogp k41 V2(3|)—— u+1(K)+ ...+ ay V3(2)(K) . (24)
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Taking into account (2.3) we obtain
1—m([[F™™ !+ —F)*'14P,dP, =
KK
2m
=°‘2m—1<1 .”[FZ"' 2+(1- )Zm_zldﬂdp:z)’*‘
KK
_2m-— 2k 2m—2k+1
3 2
+ ...ty 5” 2+ (1 —F)dpP,dp, ), (2.5)
KK

or, by developing the integrands,

1_mj‘§|:2:" 2<2ml 1)(__1)1F"l]dP1dP2____

=ty (1 —@m—1)[| F™ 24P dp, —
KK

2m-3 ~.
_ 2_"17—_1 51{[ p> (2mi— 2)(_1)‘ F'] dP, sz) +

K i=0

+... +a2m—2k+1(1 "‘(2m—2k+1)ij~2m_2de1dP2 -
KK

2m— 2k+1 2m-2k~1 (2 — 2k
s j[ 3 <m )( 1) F ]dﬂdP2)+
K i=0

+...+a3(1—3jj dP, dP, — H[—2F+1]dP1dP2>. (2.6)
KK KK

PR ey

le

Comparing the coefficients of | | F'dP,dP, (i =0,1,...,2m —2) in (2.6) we get

KK

2m —1
m(zz B 2) = @m—1)az, 2.7)

2m —1 2m—-1/(2m -2
m(zm_2k>=“—‘§‘—‘(2m_2k)a2m_l + ... +(2m_2k+ 1)a2m_2k+1,
2<k<m-1, (2.8)
2m—1 2m—1 2m —2
m(zm—zk—1)='T“<2m—2k-—1)°‘2m-1 +

2m—-2k+1( 2m-—-2k
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and

2m —3 2m —2k + 1 1
m—‘1= 2 0(2",_1+...+~—-——-2————~O(2m_2k+3+...+5a3. (2.10)

From (2.7) and (2.8) we easily conclude that
azm__ 1 =m (2.11)

and

. m 2m—1 kil 2m —2i+1/2m—2i
_ = —— — _ Oy i ,
=2kl T oom - 2k+1|\2m=2k) & 2m 2m —2k) motl

2<k<m—1, (212

in accordance with (1.4°) and (1.4").
Finally, expressions (2.9) and (2.10) can be verified by an adequate addition of the
constants defined by (2.12).

3. Proof of Theorem 2

Analogously to the proof of Theorem 1 we can assume the volume V(K) of the convex
body K to be 1 since, under an affine transformation, the expected volume V¥ (K)
changes only through V(K).

Rényi and Sulanke’s integral expression (2.1) can be extended to higher dimensions. For
the three-dimensional case we can state

E? (K) = <n ! 1) II“U( [7""2 + (1 = V)"~ *|dP, dP,dPy (3.1)

where F?,(K) is the expected number of faces of the convex hull H,,; and
V = V(P, P, P;) denotes the volume of the smaller of the two parts of K cut off by the
plane through P,, P, and P; (e.g. Buchta [1], p. 155).

With probability 1 all faces of H,,, will be triangles. Therefore, taking into account
expression (3.1), Efron’s formula (2.2) and Euler’s theorem, we conclude

2 n—l)n
n+1

VO(K)=1— [{17" 2+ (1 — V)"~ 2]dP, dP,dP, . (3.2)
KKK

To prove Theorem 2 we use the same procedure as above. We now consider formula (1.5)

V2(3!)+1(K) = ﬁlm (3)(K) +...+ ﬁZm—2k+2 VZ(S!)— 2k+ Z(K) +...+ B4 V4f3)(K) . (33)
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Taking into account expression (3.2) we obtain

2 2m(2m +1)

— e — V)™~ 114dP,dP,dP, =
e I )11 dP, dP, dP, =
2 2m—1)2m ~ ~
= 1— — ym=2 4+ (1 —V)>™ 2|dP,dP, dP.
2 2m —2k+1)(2m —2k + 2)
_ 1-— - :
oot Bam 2"”( Im—2k+3 12

izt —17)2’"‘2"]dP1dP2dP3)+
KK

+ ..+ﬂ4(1—g——'-555[172+(1-—17)2]dP1dP2dP3>, (3.4)
5 KKK

or, by developing the integrants,

2 2m(2m+1) 2m—2 Tm—1 . )
2 22m—1)2m .
= 1- - 2m—2 _
ﬂz"'( 2m + 1 L VTR dp,dp,
2m—1)2 2m-3 /2 )
M”f[ (m )( 1)V ]dPlszdP3)+
KKK i=0
2 22m =2k +1)2m -2k +2)
+...+ﬁ2m—2k+2(1—2m_2k+3_ >
% 2m—2k+1)2m -2k +2
[[ [ P2m-2%ap, dp,dp, - CM =2k *DC@m =2k + 2
Kkk D
2m—2k—1 2 Zk ‘
[ T ( m — ) l]dpl szdP3)+
KKK i

Comparing the coefficients of f | j VidP, dP,dP, (i = 0,1,...,2m — 2) in (3.5) we get
KKK

Bam > (3.6)

2m(2m+1) (2m —1 2(2m——1)2m
12 2m —2 12

2m2m+1) (2m—1\ (2m—1)2m(2m—2 8
12 2m—2k) 12 2m—2k) "

22 2 1) (2 2k + 2
(2m — k+1)2("' ) pnrs for k=23..,m—1, (37)
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2m(2m+1)( 2m—1 )=(2m—1)2m( 2m —2 )ﬂzm‘l‘

12 2m —2k—1 12 2m — 2k —1
N +(2m—2k+1)(2m—-2k+2) 2m — 2k P
12 2m —2k —1) PAmT kT2
for k=1,2,....m—1 (3.8)
and
2 2m(2Zm+1) 2 2m—1)2m
'mi2 ™ T 12 ‘(1“2m+1 12 )52“’
2 2m—-2k+1)2m—2k+2)
+"'+(1_2m~2k+3— 12 Pam-aura +
2
+...+(1—§—1)ﬁ4. (3.9)

From (3.6) and (3.7) we easily conclude that

-_2m+1

ﬂ2m 2

(3.10)

and

8 _ m2m + 1) _
mmZt2 T om—2k +1)2m — 2k + 2)

2m —1 kil(zm—2i+1)(2m—zi+2) 2m — 2i P
2m—2k) & 2m(Q2m + 1) 2m —2k) TAmT T2

for k=23...m—-1, (3.11)

in accordance with (1.5’) and (1.5").

Finally, expressions (3.8) and (3.9) can be verified by an adequate addition of the constants
defined by (3.11).

4. Some remarks
Remark 1. For m = 2 expressions (1.4) and (1.5) become
V(K) =2VP(K) and VE(K) = 3V(K),

coincident with Buchta’s formulas (1.2) and (1.3).
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Remark 2. Some numerical values for the planar case:

VAK) = 2V (K),

Vs2(K) = 3VP(K) — 5VP(K),

VO(K) = 4V(K) — 14V (K) + 28V (K),

V2(K) = 5V{P(K) — 30V2(K) + 126 V(K) — 255VD(K) .

Remark 3. Some numerical values for the three-dimensional case:

ViV (K) = SV (K),
VOK) = JVOK) - 2 VOK),
VE(K) = 2VP(K) — 21 VEO(K) + 63V (K) .

Remark 4. Recently, again Buchta [3], p. 96, generalizes his results (1.2) and (1.3) to
higher dimensions. For an arbitrary d-dimensional convex body he shows that

d+?2
V;(i)z (K) = "2_ d(d+)1 (K) .

Remark 5. Unfortunately, the procedure to relate the expected volume V¥ (K), d = 2, 3,

of the convex hull of n random points to the integral expressions (2.3) and (3.2) cannot

be extended to higher dimensions. Therefore it seems to be difficult to generalize our
results to higher dimensions.

Fernando Affentranger

Department of Mathematics

University of Buenos Aires
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