Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 43 (1988)

Heft: 1

Artikel: Eine einfache Konstruktion von Punkten und Tangenten der Ellipse

Autor: Strubecker, Karl

DOI: https://doi.org/10.5169/seals-40797

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

22 El. Math., Vol. 43, 1988

Didaktik und Elementarmathematik

Eine einfache Konstruktion von Punkten und Tangenten der Ellipse

Bei der Darstellung eines Kreises k^* in allgemeiner Lage durch Parallelprojektion auf eine Ebene π erhält man in der Regel für die Bildellipse k von k^* einen Durchmesser $[T_1T_2]$ von k mit den beiden parallelen Tangenten t_1 und t_2 in den Ellipsenpunkten T_1 und T_2 sowie einen allgemeinen Punkt P von k. Um dann sofort (ohne Ermittlung der beiden Hauptachsen der Ellipse) beliebig viele weitere Punkte X des Ellipsenbogens (T_1PT_2) und ihre Tangenten zu konstruieren, kann man den in Figur 1 eingezeichneten, besonders einfachen Weg einschlagen:

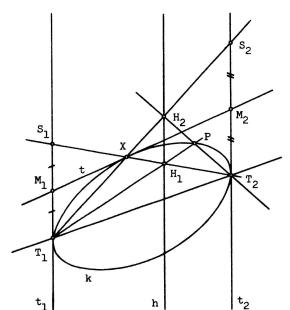
Man zeichne zwischen t_1 und t_2 eine beliebige dazu parallele *Hilfsgerade h*. Die Strahlen $[T_1P]$ und $[T_2P]$ schneiden die Hilfsgerade h in Punkten H_1 und H_2 . Die beiden Verbindungsgeraden $[T_1H_2]$ und $[T_2H_1]$ schneiden sich dann in einem *Punkte X* des Ellipsenbogens (T_1PT_2) . Durch verschiedene Wahl der Hilfsgeraden h kann man so beliebig viele Punkte X der Ellipse h erhalten.

Sind weiter S_1 und S_2 die Schnittpunkte der Geraden $[T_2H_1]$ und $[T_1H_2]$ mit den Tangenten t_1 und t_2 und sind M_1 und M_2 die Mittelpunkte der Strecken T_1S_1 und T_2S_2 , dann liegen die drei Punkte M_1 , X, M_2 auf einer Geraden t, welche die Tangente der Ellipse k im Punkte X ist $[1^*]$.

Weil das Halbieren einer Strecke (Stechzirkel!) einfacher und genauer ist als das Halbieren eines Winkels, ist damit auch eine besonders einfache und genaue Konstruktion der Ellipsentangenten in den Punkten X gewonnen.

Weil die angegebenen Konstruktionen für Punkte und Tangenten einer Ellipse affin invariant sind, genügt es, ihre Richtigkeit für einen Kreis k zu beweisen.

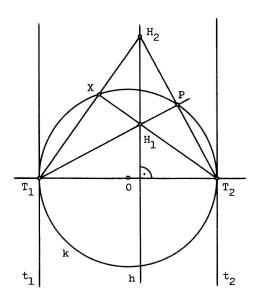
Zum Beweis seien also t_1 und t_2 zwei parallele Tangenten des Kreises k in den (diametralen) Punkten T_1 und T_2 , ferner P ein fester Punkt von k (Figur 2). Ist dann h

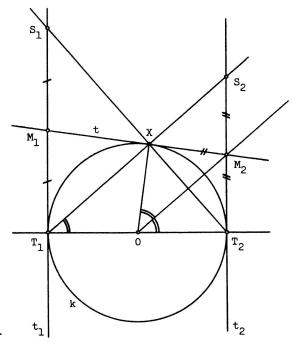


Figur 1.

El. Math., Vol. 43, 1988

eine beliebige Parallele zu t_1 und t_2 , dann liefert unsere Konstruktion als Schnittpunkt X der beiden Geraden $[T_1H_2]$ und $[T_2H_1]$ einen $Punkt\ X$, von dem nun zu zeigen ist, dass er auf dem Kreis k liegt. Weil nun h auf dem Kreisdurchmesser $[T_1T_2]$ normal steht und weil nach dem Satz von Thales auch die beiden Geraden $[T_1P]$ und $[T_2P]$ zueinander normal sind, ist der Schnittpunkt H_1 von h mit der Geraden $[T_1P]$ der $H\ddot{o}henschnittpunkt$ des Dreiecks $(T_1T_2H_2)$; analog ist der Schnittpunkt H_2 von h mit der Geraden $[T_2P]$ der $H\ddot{o}henschnittpunkt$ des Dreiecks $(T_1T_2H_1)$. Daher sind auch die beiden Geraden $[T_1H_2]$ und $[T_2H_1]$ zueinander normal und ihr Schnittpunkt X liegt folglich nach dem Satz von Thales auf dem Kreis k, was zu beweisen war.





Figur 2.

Figur 3.

Die Richtigkeit der Tangentenkonstruktion folgt bei dem Kreis k sofort aus dem Peripherie- und Zentriwinkelsatz (Figur 3). Die Tangente t des Kreises k im Punkte X schneidet die Tangente t_2 von T_2 in einem Punkte M_2 , für den $M_2X = M_2T_2$ gilt. Daher liegt M_2 auf der Halbierenden des Winkels T_2OX . Somit sind die Geraden $[OM_2]$ und $[T_1X]$ zueinander parallel. Schneidet dann die Gerade $[T_1X]$ die Tangente t_2 von t_2 im Punkte t_2 , so folgt aus dem Strahlensatz, weil t_2 Mittelpunkt der Strecke t_3 ist. Die Tangente t_4 des Kreises t_4 im Punkte t_4 enthält also tatsächlich den Mittelpunkt t_4 der Strecke t_4 so liegt aus demselben Grunde auch der Mittelpunkt t_4 der Strecke t_4 im Punkte t_4 so liegt aus demselben Grunde auch der Mittelpunkt t_4 der Strecke t_4 auf der Tangente t_4 des Kreises t_4 im Punkte t_4 . Die Tangente t_4 von t_4 ist also die Verbindungsgerade der Punkte t_4 und t_4 was zu beweisen war.

Karl Strubecker, Universität Karlsruhe

ANMERKUNG

[1*] Ich habe diese einfache Tangentenkonstruktion der Ellipse (die sinngemäß auch für die Hyperbel und Parabel gilt) schon in dem Buche «Vorlesungen über Darstellende Geometrie» (Verlag Vandenhoeck und Ruprecht, Göttingen, 2. Auflage 1960) mitgeteilt.