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Proof. Any s of the w;’s add to at least (3)
<> any n — s of the w;’s add to at most (3) — (3)
<> any r of the w;’s add to at most (3) — ("3"
=[1424...4+(=D]=[1+2+...+ (n—r=1)]
=n-1)+n-2)+...+(n-r).

V. W. Bryant, Department of Pure Mathematics,
Sheffield University
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Didaktik und Elementarmathematik

Kombinatorik mit dem Computer: Partitionen und Frankaturen
1. Einleitung

In den verschiedensten Gebieten der Mathematik sieht man sich vor Probleme
gestellt, die auf die Abzdhlung oder die Auflistung bestimmter Partitionen hinaus-
laufen. Als Partitionen bezeichnet man in der Kombinatorik additive Zerfillungen
einer natiirlichen Zahl » mit Summanden aus einer vorgegebenen Referenz-Menge,
wobei die Reihenfolge der Summanden in einer solchen Figur belanglos ist. Die
folgende Aufzihlung zeigt die moglichen Partitionen der Zahl 20 iiber der Referenz-
Menge {2, 3, 7}:

3t+3t717

2+313131t31313

21213131312

212121710
2T2+21t2+31T31t3+3

2+2+2+2+2+3+7
2T21T212121t2t21313
2T2121212Tt2t2121212

ANZAHL DER FIGUREN: 8

Die Summanden in den einzelnen Figuren sind hier nach zunehmenden Werten
geordnet.
Kommt in einer Partition der Zahl » iiber der Referenz-Menge

{al>a2;\---9ap}
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der Summand g; genau x;-mal vor, dann gilt
axitayx,+...+a,x,=n. (1.1

Die Menge der Partitionen mit den genannten Parametern erweist sich damit als
dquivalent mit der Ldsungsmenge der diophantischen Gleichung (1.1), wenn nicht-
negative ganze Werte x; vorausgesetzt werden. Dieser Zusammenhang macht die
Partitionen zugleich zu einem Gegenstand der Zahlentheorie.

Wihrend das Auflisten von Partitionen bislang eine recht mithsame Aufgabe war, gibt
es schon lange eingehende Untersuchungen zum Abzihlen von Partitionen-Mengen.
Erste systematische Untersuchungen iiber Partitionen finden sich bei L. Euler in
dessen ,Introductio in Analysin infinitorum* aus dem Jahre 1748 [1*]. Spater hat
J. J. Sylvester eine generelle Abzihltheorie fiir Partitionen aufgestellt [2*]. Grundsitz-
lich kann auf dieser Basis zu jeder Referenz-Menge fiir die Anzahl f, der Partitionen
von n eine Formel hergeleitet werden. Insbesondere hat Sylvester gezeigt, dass aus der
Referenz-Menge {a, , a5, ... ,a,} die formale Potenzreihe [3*]

1 @ .
T (=) (=) 2/ (1.2)

hervorgeht.

Die Sylvestersche Theorie ist leider mit dem Nachteil behaftet, dass sich die
Bestimmung der Koeffizienten-Terme f, mit zunehmendem Umfang der Referenz-
Menge und wachsenden Werten der a; schon bald als unpraktikabel erweist. So erhilt
man etwa fiir die Referenz-Menge {1, 2, 5} die abzihlende Potenzreihe

1 e ¢]

1=-x)A-x)(1-x%) .

2n

Die Partialbruchzerlegung der linken Seite lautet mit = e s

1 1 1 1 1 13 1 1 1
2 5y it 7t T
1-x)0-xH0-x") 10 (I1—-x) 4 1-x)* 40 1—-x 8 l+x
+1 1 o’ w? B w + 1
S5 -o-*+o)\(l-wx) (-?x) (I-0*x) (1-0*x)]’

Unter Abstiitzung auf die fiir beliebiges s € N geltende Entwicklung

kann daraus die Abzihl-Formel

(n+4)2+_1_]

=" 2
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gewonnen werden [4*]. Dieses Beispiel ldsst erkennen, dass die jeweils erforderliche
Partialbruchzerlegung der Reziproken zu einem Polynom ein ernsthaftes Hindernis
darstellt.

Im Umgang mit Partitionen hat in den letzten Jahren der Einsatz von Computern eine
gewisse Verschiebung der Akzente gebracht. Wihrend Auflistungen von umfang-
reichen Partitionen-Mengen erst mit Hilfe von Computern moglich geworden sind,
scheinen andererseits Abzdhl-Formeln zusehends an Bedeutung zu verlieren. Die
sogenannte konstruktive Kombinatorik ist heute auch innerhalb des Problemfeldes der
Partitionen deutlich zu erkennen. Diese Entwicklung nachzeichnend mochte die
vorliegende Note je einen schnellen Algorithmus fiir das Abzihlen und das Auflisten
von Partitionen iiber beliebigen Referenz-Mengen vorstellen.

2. Die Abziahlung von Partitionen
Zunichst wollen wir uns mit der Abzihlung der Partitionen iiber der Referenz-Menge

{a,,a, ..., a,}

im Lichte der Computer-Mathematik befassen. Insbesondere soll die endliche
Anzahl-Folge

Nis faseeos S

mit einem Rechner bestimmt werden. Um zu einem entsprechenden Algorithmus zu
gelangen, denken wir uns die vorgegebene Referenz-Menge iiber die Kette

{a) - la, a4} = {a1,a3,a3) = > {a,a,... ap}

schrittweise aufgebaut. Zur k-elementigen Zwischenstufe {a;, ay,..., ay} moge die
Anzahl-Folge

fo(k)’ fl(k)s fz(k)’ o fn(k) 2.1

gehoren, wobei ﬁ)(k) =1 gesetzt ist. Diese Verlingerung der eigentlichen Anzahl-Folge
nach links wird sich gleich als sehr zweckmaissig erweisen.
Es ist jetzt

fi=£P firalle 0=j=n.

Wird nun zur Referenz-Menge {a,, a;, ..., a;} das Element a; ., adjungiert, dann gilt
firalle gy =j=n

k+1 k k k
PSRN AL AR AL I (2.2)

J—ar+1

Die Summe ist jeweils so weit zu erstrecken, als der untere Index nicht-negativ
ausfillt. Das Glied £%),, . auf der rechten Seite zihlt die Partitionen der Zahl; iiber
\
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der neuen Referenz-Menge, in denen der zuletzt adjungierte Summand a;,; genau
h-mal vorkommt.

Die Summe (2.2) kann mit dem Glied f* endigen, nimlich dann, wenn es zur Zahl
genau eine Partition mit lauter Summanden a;,; gibt. Eine allenfalls vorhandene
Figur dieser Art wird jetzt aufgrund der zuvor eingefiihrten Ergiinzungswerte £ = 1
korrekt mitgezihlt.

Bei Verwendung der Programmier-Sprache BASIC kénnen die mit dem Ubergang
von k zu k+ 1 anfallenden Summen (2.2) durch folgende FOR-NEXT-Schleife
herbeigefiihrt werden:

FOR J=A(K+1) TO N

F()=FJ)+FJ-AK+1)) (2.3)
NEXT J

Ist etwa a4, = 5 und n = 20, dann bewirkt (2.3) die Ersetzungen

fs =fs + /o
Jo =Js +1i
fi=hH+1h
Js =fs + /3
Jo=fs +/a
o= frot fs
o= fo+ fis

Da diese Ersetzungen in der notierten Reihenfolge realisiert werden, folgt daraus z. B.
[0 =10+ 19+ 1P + 9+ 10

und dies ist die Summe (2.2) fiir j = 20.
Es zeichnet sich jetzt die Moglichkeit ab, die Zahlen

0(17), f](p)’__.’ fn(p)

rekursiv zu berechnen. Wird die Referenz-Menge in DATA-Zeilen abgelegt, dann
kann die massgebende Anzahl-Folge iiber das anschlieBend in SIMONS-BASIC [5*]
notierte Rechner-Programm aufgebaut werden:

DIM F(N)

F(0)=1

K=1

LOOP

READ A

EXIT IF A>N

FOR J=A TO N
F(J)=F(J)+F(J-A)

NEXT J
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K=

K+1

EXIT IF K> P
END LOOP

DATA P
DATA A(1),AQ2), ..., A(P)

Als Start-Folge ist

zu wihlen; dazu sind die Anweisungen

DIM F(N): F(0) =1

erforderlich.
Bei einem vorgegebenen maximalen Index n kommen nur jene Elemente der
Referenz-Menge zum Tragen, die kleiner als »n sind. Setzt man eine Anordnung der
Referenz-Menge in den entsprechenden DATA-Zahlen nach aufsteigenden Werten
voraus, dann kann man die LOOP-Schleife verlassen, sobald a > n ist (EXIT IF
A > N).
Im anschliessenden Rechner-Programm ist die Referenz-Menge

{1, 2,5, 10, 20, 50}

enthalten (DATA-Zahlen 1850 und 1890).

Rechner-Programm 1

1000
112
102P
123R
1642
1258
186R
1872
1080
123@
1122
1110
1129
1131
l1g9p
115@
1162
11708
1180
1190
1200
1210
1220
1232
1240
1258

REM
REM
REM
REM
REM
REM
RENM

.

REM

KK KKK KK KKK K KK KKK K KKK KK K KX K X
X ANZAHL PER PARTITIONEN

x UEBER EINER REFERENZ-MENGE
x [R1.R2Z,...... .AP]
x
x
x

ALCAZE ... ... <AP

x
x
x
x
x
DI PDICIIICIK I I IR I X KR K K 3

INFORMATION

PRINT CHR$(142)

PRINT"DIE ELEMENTE PER™
PRINT"REFERENZ~MENGE”
PRINT"SIND IN PATA-ZEILEN"
PRINT"ABZULEGEN ¢

PRINT

REM

EINGRBE

PRINT"BIS ZU WELCHEM INDEX N
PRINT”SOLL PIE FOLGE DER"
PRINT "PARTITIONS-ZAHLEN"
PRINT"BESTIMMT WERDEN 7~
PRINT

INPUT”INDEX N EINGEBEN":N
TI$="PRROAB"

1260
1270
1280
1290
1320
1310
1320
1330
1340
1350
1368
1378
1380
1330
1400
19418
1420
1438
1440
1450
1460
14708
1480
1430
1500

1510 :
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PRINT CHR$(142)

-

REM LEGENDE

PRINT SPC(2)"PARTITIONEN UEBER DER™
PRINT SPC(2)"REFERENZ-MENGE"

PRINT

13
.

REM PARTITIONSZAHLEN BERECHNEN
pIM FIN)

READ P

F(B)=1

K=1: R¢="("

LooP

READ A

A4=STR$(AI: L=LEN(A$)
EXIT IF ADN
R$=R$+RIGHTS(AS ,L~1)+"
: FOR J=A TO N

: F(JI=FLJ IF(I-A)

¢ NEXT J

K=K+1

EXIT IF K>P

END LOOP
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1520 : 1718 PROC OUTPUT

1532 REM REFERENZ-MENGE AUSDRUCKEN 1228 U=p

1542 L=LEN(R$) 1732 FOR I=1 TO N

1550 R$=LEFT$(R$.L—1)r"1" 1740 U=UT1

1562 PRINT SPC(S)IR$ 1758 14=STR$CI): L=LENCI$)

1572 PRINT ' 1768 PRINT SPC(8-L)I$;

1580 : 17278 F$=STR$(F(IJ): L=LENCF$)

1598 : 1782 PRINT SPCCIR-L JF$

1602 REM TABELLE AUSPRUCKEN 1730 IF FRAC(U.S5)=R THEN PRINT

1618 PRINT SPC(9)" INDEX"; 1802 NEXT I

1628 PRINT SPC(Z)"PARTITIONSZAHL" 1812 END PROC

163@ PRINT 1821

LoD ExEC OUTPUT 1333 éEH UMFANG DER REFERENZ-MENGE

1652 PRINT -

1660 PRINT" RECHENZEIT: :SPC(Z)TI$ -l

1678 END ¢

1 Bom 3 1872 :

1692 - 1888 REM ELEMENTE PER REFERENZ-MENGE
1892 DATA 1,2.5.10.20.50

1728 REM PROZEDUR OUTPUT

Mit dem vorliegenden Programm kann das folgende Geldwechsel-Problem gelost
werden.

Aufgabe 1: In der Schweiz gibt es sogenannte Scheide-Miinzen zu 1, 2, 5, 10, 20 und
50 Rappen. Auf wieviele Arten kann man mit solchen Geldstiicken Betrige von
10, 20, ..., 100 Rappen zusammenstellen?

Hier sind zur genannten Referenz-Menge nur die Zahlen fig, fx,..., fioo gesucht.
Man kann den Output auf diese Teilmenge beschranken, indem man die Zeile 1730 in
der Ausgabe-Prozedur wie folgt ersetzt:

1730  FOR I=10 TO N STEP 10.

Dem Drucker-Output kann entnommen werden, dass etwa der Betrag von 1 Franken
auf figo = 4562 Arten in Kleingeld ausbezahlt werden kann.

PARTITIONEN UESER DER PARTITIONEN UEDER CER
REFERENZ~ENGE REFERENZ-NENCE
£1.2.5.19.20 .58 £1.2.5.19.20.50 100,500, 12001
INDEX PARTITIONSZAHL INDEX PARTITIONSZAHL
1@ 11 S0 S824002
20 41 1000 24900206814
30 123
42 236 RECHENZEIT: 0Q0@191
S2 451
60 >33
78 1312
80 2064
3 3121
120 1562

RECHENZCIT: 000008

Bemerkenswert ist die effektive Rechenzeit von nur 8 Sekunden; man hat sich zu
vergegenwartigen, dass auch dem verkiirzten Output eine 100-gliedrige Anzahl-Folge
zugrunde liegt, die vollstindig berechnet werden muss. Wir haben es hier offen-
sichtlich mit einem sehr schnellen Algorithmus zu tun.

Der Ubergang zu einer andern Referenz-Menge kann durch entsprechendes Uber-
schreiben der DATA-Zeilen vorgenommen werden.
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Aufgabe 2: Auf wieviele Arten kann man Betrage von 500 Franken und 1000 Franken
mit Miinzen zu 1, 2 und 5 Franken und Noten zu 10, 20, 50, 100, 500 und
1000 Franken zusammenstellen?

Die massgebende Referenz-Menge ist jetzt
{1, 2, 5, 10, 20, 50, 100, 500, 1000} .
Mit der modifizierten Anweisung
FOR 1=500 TO 1000 STEP 500

in der Ausgabe-Prozedur werden die beiden gesuchten Zahlen ausgedruckt.

Es sei darauf hingewiesen, dass mit dem priasentierten Rechner-Programm auch beim
Ausdrucken der Referenz-Menge nur jene Elemente beriicksichtigt werden, die noch
in die vorgesehene Anzahl-Folge f;, f5,..., f, eingehen.

Im Zentrum des dargelegten Abzihl-Algorithmus stehen die mit elementaren Uber-
legungen gewonnenen Beziehungen (2.2). Wir wollen diese abschliessend auch noch
mit dem Abzidhlverfahren in Verbindung bringen, das mit Potenzreihen arbeitet.
Verpackt man die unendliche Folge

AR AL fj“‘), ..

in die Potenzreihe

(o6}

oe(x) =2, [P xI,

j=0

dann beinhalten die Beziehungen (2.2) die Rekursionsformel

) or (x) .

Prwt (x) = (1 + X391+ X200 4 ) 9y (x) = (1 —

Wegen f¥ =1, £ =0 fiir j> 0 ist po(x) = 1 und damit

1 1 1
_xal l_xaz... 1_xa,,

@p x)= 1

womit die Sylvestersche Reihe fiir die Partitionen iiber der Referenz-Menge
{a1,a, ..., a,} hergeleitet ist.
Unser Algorithmus ist ausgelegt auf die Berechnung der endlichen Folge

@, £9,., 19
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Diese Zahlen sind die Koeffizienten des sogenannten Vorpolynoms vom Grad n [6*]
n
q,lgn) (x) = Z‘B ﬂ(p) xJ
=

der Potenzreihe ¢, (x).

Der hier entwickelte Algorithmus kann iibrigens leicht so modifiziert werden, dass die
Partitionen der Zahlen 1, 2, 3, ..., n mit genau s Summanden aus der Referenz-Menge
{a1, @, ..., a,} abgezihlt werden. Auch dies ist eine Problemstellung der abzihlenden
Kombinatorik, der man sich gelegentlich gegeniibergestellt sieht. Da dieses neue Ab-
zdhlproblem eine 2-parametrige Abzihl-Folge impliziert, ist zu Beginn ein entspre-
chendes 2-dimensionales Parameter-Feld zu reservieren. Der Kern des modifizierten
Programmes lautet dann wie folgt:

DIM F(N, S)

F(0,0) =1

K=1

LOOP

READ A

EXIT IF A> N

FOR H=1 TO S
FOR J=A TO N
FO,H=FJ,H+FJ-AH-1)
NEXT J

NEXT H

K=K+1

EXIT IF K> P

END LOOP

DATA P
DATA A(1),A(2),..., A(P)

Anstelle von (2, 2) ist nimlich jetzt die Rekursionsformel
k+1 k k k

TG = 8% + SR h-1) + S 200 b2 (2.4)
zustindig. Die Summe ist jeweils soweit zu erstrecken, als im Paar (j — r. ax4y, h—r)
beide Komponenten nicht-negativ ausfallen.
Gezihlt werden mit dem neuen Algorithmus zugleich die Losungen des diophantischen
Gleichungssystems

axitayx,+ o tax,=j (2.5)

X1+ X+t Xxp=s

fir j=1,2,...,n.
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3. Die Auflistung von Partitionen

Unser ndchstes Ziel ist ein schneller Algorithmus fiir die Auflistung der Partitionen
zur Zahl n iiber der Referenz-Menge {a,, a,, ..., a,} in der Form der Losungsvektoren

(xl,XZ,“.,Xﬁ)

von (1.1). Wie in der Kombinatorik iiblich, wollen wir fortan den Parameter n als
Index der betreffenden Figuren bezeichnen.

Jede Auflistung einer Figuren-Menge setzt die Festlegung einer bestimmten Reihen-
folge voraus. Der Auflist-Algorithmus besteht dann im wesentlichen in der Kon-
struktion des Nachfolgers zu einer beliebigen Figur in der Liste. Im vorliegenden
Falle entscheiden wir uns fir die riickldufige lexikographische Anordnung der
Losungsvektoren, weil diese mit einer relativ einfachen Nachfolger-Konstruktion
einhergeht.

Beim gewihlten Auflist-Konzept ergibt sich fiir die Referenz-Menge {2, 3, 5, 7} zum
Index n = 18 der folgende Computer-Output:

PARTITIONEN UOM INDEX N= 18
UEBER DER REFERENZ-MENGE:

t2,3,5,21

FIGUREN:
( 9, 8, 2, 2)
( 6, 2, B, @)
€ 3, 4, 8, 9)
( 8, 6, 2, @)
s, 1,1, @)
€ 2, 3.1, @)
¢4, 2, 2, 23
1, 2, 2, @)
(2,1, 3, 2)
4, 1, 2. 1)
1, 3, 0, 1)
(3, @, 1, 1)
(@, 2.1, 1)
(2., 2, 2)

ANZAHL FIGUREN: 14

RECHENZE I T:2RRBRE

Wir wollen daran die anschliessend dargelegte Nachfolger-Konstruktion exemplarisch
einsichtig machen.
Um von einem bestimmten Losungsvektor

(XI,xz,”.,Xb)

zum Nachfolger zu gelangen, suche man zunichst den kleinsten Komponenten-Index
j>1 auf mit der Eigenschaft, dass x; unter alleiniger Beriicksichtigung der gerade
vorhandenen\ Werte von Xj4i, Xj+2,..., X, um eine Einheit erhoht werden kann.
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Ein solcher Sprung an der Stelle j ist genau dann moglich, wenn

p
ai(x;+1)sn— Y ayx, (3.1
h=j+1

ist. Die entsprechende Abfrage legt die Einfiihrung des Rechen-Parameters

P

§= Z ap Xp
h=j+1

nahe, dessen Wert mit jeder Anderung von j nachzufiihren ist. Sobald der Sprung-
Index j feststeht, sind die Anweisungen

xp=(n-s)/a;, x;:=0,x3:=0,...,x,,=0 und j:=1

vorzunehmen. Falls nun x; ganzzahlig ausfillt, ist die Nachfolger-Figur gefunden.
Andernfalls benutze man den erhaltenen nicht-zuldssigen Vektor als neue Start-
Figur.

Beim vorangestellten Beispiel kann etwa im Ldsungsvektor (0, 1,3,0) erst die
4. Komponente um eine Einheit erhoht werden. Nach Ausfithrung dieses Sprunges
gelangt man zum Vektor (11/2,0, 0, 1). Da dessen erste Komponente nicht ganzzahlig
ist, hat man von diesem Vektor ausgehend den nachsten Sprung-Index aufzusuchen;
dieser liegt bei j = 2. Die Ersetzung x;:= x,+ 1 ergibt nun den Vektor (8/2,1,0,1)
und dies ist die ndchste Figur in der Liste.

Die gegebene verbale Umschreibung des Auflist-Algorithmus kann nun sofort in ein
Fluss-Diagramm umgesetzt werden (siehe Seite 166).

Da unserem Auflist-Algorithmus eine auf wenigen Rechenschritten beruhende Nach-
folger-Konstruktion zugrunde liegt, sind relativ kurze Rechenzeiten zu erwarten. Das
vorangestellte Rechenbeispiel bestitigt diese Vermutung.

4. Die freien Partitionen
Bis jetzt wurden nur Partitionen iiber einer Referenz-Menge

R={a;,a;,...,ap} = N
betrachtet, d.h. R war eine endliche Teilmenge von N. Wir lassen nun die Be-
schrinkung auf Teilmengen von N fallen und setzen R = N. Man spricht dann von
freien Partitionen vom Index n. Bei dieser Offnung der Referenzmenge tritt an die

Stelle von (1.1) die diophantische Gleichung

X1+ 2x+...nx,=n. 4.1
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Fluss-Diagramm
Auflist-Algorithmus fiir Partitionen vom Index n

[per | Fluss-Diagram

Auflist-Algorithmus fiir Partitionen vam Indexn n

[DIM A(P), X(P)

Schleife A: besorgt die Bestimmung des Sprung-Index j
Koeffizienten und die Nachfithrung von s
A1), A(2), «.. , A(P)
einlesen Schleife B: bewirkt die Riickstellungen
)
Y x2.=0, x3.=0, eeses s xj_l.zo
S:= 0 und setzt j auf 1.
= 1
LX(l):= INT(N/A(1)) ] Start-Vektor
nein /\
| A(1).X(1)= N>
ja ]
PROZEDUR
FIGUR
Schleife A
Jr= J+1
3 [ 'd
e p 42 | PrINT v
END
nein

S:= S-A(J).X(J)
X(J):= X(J)+1

X(J):= X(J)-1

S:= S+A(J).X(J)
X(1):=(N-S)/A(1)

Schleife B

J:= J-1 nein

ja

X(J):= 0 Iv1 (x(1))=g

ja
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Grossere Summanden als # konnen niamlich bei einer additiven Zerfallung der Zahl n
nicht auftreten, d.h. bei den freien Partitionen vom Index n kommen jeweils
nur die Summanden aus N, = {1, 2, ..., n} zum Tragen.

Die Gleichung (4.1) ist in verschiedenen Gebieten der Mathematik anzutreffen. So
beschreibt z.B. jeder Losungsvektor von (4.1) eine mogliche Zyklen-Struktur in der
Gruppe S, der Permutationen von n Objekten (symmetrische Gruppe vom Grad n).

Zyklen-Struktur (2,1,0,1,0,0, 0, 0)

Die Fig.1 zeigt den Di-Graphen zu einer Permutation a« aus ©g mit der Zyklen-
Struktur (2,1,0,1,0,0,0,0), d.h. a zerféllt in 2 Zyklen der Linge 1 und je einen
Zyklus der Langen 2 und 4.

Wir betrachten jetzt die Anzahl der Losungen von (4.1) in nicht-negativen ganzen
Zahlen mit p,. Mit der Folge der Partitionszahlen

Pos P1s P2y <<+ Pns --- (p0:=1)

werden aufgrund der letzten Bemerkungen zugleich die Zyklen-Strukturen in den
Gruppen S, abgezidhlt. Andererseits weist diese Folge auch mancherlei Beziige zur
Zahlentheorie auf [7*].

Die beiden prisentierten Algorithmen fiir die Abzihlung und fiir die Auflistung von
Partitionen iiber endlichen Referenz-Mengen konnen problemlos auf die freien
Partitionen iibertragen werden.

Fiir das Abzédhlen der Figuren bis zu einem vorgegebenen Hochstindex n reicht N,
als Referenz-Menge aus. Diese kann jetzt zusammen mit der Konstruktion der Ko-
effizienten fj(k) sukzessive hineingebracht werden, was die fritheren DATA-Zeilen
entbehrlich macht. Der Abschnitt des Rechner-Programms, der den mathematischen
Kern des Algorithmus enthilt, ist dann wie folgt zu modifizieren:
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Rechner-Programm 2

1358 REM HAUPTPROGRAMM
1362 DIM PC(N)

1372 P(B)J=1: A=0

1380 LOOP

1392 A=At1

1480 EXIT IF A>N

1418 : FOR J=A TO N
1428 : P(J)I=P(JITP(J-A)
1430 : NEXT J

14402 END LOOP

1458 EXEC OUTPUT

1468 PRINT

1478 PRINT RECHENZEIT: :SPC(23TI¢
1480 END

Darin sind die fritheren Parameter f; in Anpassung an die neue Bezeichnungsweise
durch p; ersetzt. Der anschliessende Rechner-Output zeigt eine Tafel der ersten
100 Partitionszahlen (n = 100). Bemerkenswert ist wiederum die kurze Rechenzeit von
nur 120” (Rechner Commodore C 64).

ANZAHL DER
FREIEN PARTITIONEN
UoM INDEX N
INDEX PARTITIONSZAHL
g L 41 44563 21 4837205
i 3 2 53104 >z 5332783
£ a 43 63261 >3 8185689
: 5 49 25178 79 7083580
- > a5 8913¢ 25 811826%
o (1 96 185558 76 9283831
2 H P 124754 22 18613863
< £ a8 147273 ’8 12132169
s o5 43 173525 73 13898650
i *2 50 204226 8e 15236476
" ss 51 2393943 81 18004327
12 3 52 281589 82 20806255
2 16 53 329931 83 2333489
s 19 Se 386155 84 26543660
15 176 SS 451226 8s 3016735>
‘0 - s6 S20823 88 34262362
e 235 52 614159 87 386885603
4 e sg 215220 g8 e4128103
18 P s 931820 89 49935325
i3 b1 62 96696> a9 56634153
21 292 81 1121508 91 64112353
22 1802 oz i30a1ise 92 725338827
23 1255 a3 1505493 a3 820108177
24 1575 64 1241630 94 92663720
2 ] 6s 2012558 as 104651419
26 2438 66 2323522 96 118114304
22 3018 o 2873683 » 133230339
28 3718 c8 3a87735 s 152199136
z P e 3559345 s 163223608
= %8 +@87%08 100 1505652352
31 0842
2 i RECHENZEIT: @2@126
33 12143
3¢ 12310
as 14883
36 17997
37 21637
38 26015
as 31185
.0 37339

Im Auflist-Algorithmus fiir die Figuren vom Index n konnen im Falle der freien
Partitionen verschiedene Vereinfachungen vorgenommen werden. Zum einen sind
jetzt die erste und die letzte Figur in der Liste bekannt: Am Anfang der Liste steht
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ndmlich der Losungsvektor (n,0,0,...,0,0) und Schluss-Figur ist jeweils der Losungs-
vektor (0,0,0,...,0,1). Andererseits ist der berechnete Wert von x; wegen der
besonderen Struktur der Gleichung (4.1) immer ganzzahlig, so dass die entsprechende
Abfrage auf Ganzzahligkeit entfallen kann. Der aufgrund dieser Uberlegungen
verkiirzte Auflist-Algorithmus fiir die freien Partitionen vom Index » ist im an-
schliessenden Fluss-Diagramm festgehalten.

Fluss-Diagramm FREIC FPARTITIONCN

Algorithmus fiir die Auflistung der freien Partitionen Sort IRoeR N

vom Index n N= 18

imwr N FIGUREN:
€19. 0. 9. 2, 9. 8, 2, 9. 3. 9)
(8.1, 0.0.9,9.2,3.a_03)
(6.2,0,0,.9,.0,0,0, 2, 3)
DI Xiw) (e, 3,0.0,0.0,0.0.0.2
V=0 (2,4,9,0.0,0,0,0,0,0)
§:=0 (9.5.0,9.09.09,8,0.0.0
J:=1 (7.9,1,0,0,0,0, 0, 09,0
(S.1,1.9.98,8.9, 0,8, 0
3.2,1.02,0,0.0, 9,3,
€1.3,1,2,9,.0,0,0,2,0)

erste Fi
gur (4.8,2,0.0,0,, 0,3, 3
€2.1,2,@,0,09,.0,a, 2,2
(9,.2,2.9.8,0,0,a,a.02)
(1,0.3,09,09.0.0, 0.0,
(6.08,.0,1,9,0,0,2, 0,0
C4,1.9,1,0,09.0, 0.2, d)
€2.2.9.1,0,9,0,0,0,a
(9,3.9.1,0,2.0,09,9,
ja (3.9,1,1,0,0,0, 9, 9,9
X(N)= 1 PRINT v €i1,1,1,1,08,8,.02, 0, 2, 8
END (9.9.2,.1,8.8. 8, 0.0, N
; (2.0,0.2.8,.0,0,0.0,03
pein o, 1.0.2.0.a 0,9, a, 8
(S.9.2.9,.1,.9.9,.0, 2,2
J:= J+1 €3,1.0.0, 1,0.0,8, 0. 0)
S:= S - J.X(I)
(1.2.8.9,1,0.02,0.0,9
X(J):= X(J)+1 t2.8,1,.92,1,0.0, 9.8, 2
9. 1.1, @.1,8.09, 8, 0,2
(1,0, 8,.1,1,0,.8, 0,0, 0
(9.2,.9.02.2,0.0,0,0.3N
(+.9,0,0,0,1,0,0, 2, 2
€2,1,9,.0,0,1,0,0,3.0)
X(J):= X(J)-1 (9.2.0.9.9.31,0,0.9.0)
(1,0,.1.0,0,1,0,09.0.3
(9.9,9,1,08,1,0. 0,0, 83
(3,2,0.9,9.0, 1,2, 0.0
i1,1,0.9,0,98.1, 0,8, 8)
§:= 8 + J.X(J) (9.0.1.0.0.0, 1,8, @, 8
X(1): = N-S (2,0, 0.0,0,0,0, 1,0, a8
(9.1,9.0.0,0.8, 1,02, @)
- B
(1.0, 9. 9,9,0.0.0, 1,2
({9.0.0.9,0,0.8.0, 0.1
ANZAHL FIGUREN: 2
nein RECHENZEIT: 202028
X(J):= 0

5. Frankatur-Probleme

Mit den beiden Primér-Algorithmen koénnen auch noch gewisse Fragen aus der
Kombinatorik geklart werden, die auf den ersten Blick nicht mehr zum Problemfeld
der Partitionen zu gehdren scheinen. Als Aufhidnger fiir die folgenden Schluss-
betrachtungen diene die
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Aufgabe 3: Die schweizerische Postverwaltung hat zu einem gewissen Zeitpunkt 5 ver-
schiedene 10-Rappen-Marken und 3 verschiedene 20-Rappen-Marken im Umlauf.
Auf wieviele und auf welche Arten kann man damit ein Porto im Betrage von
50 Rappen zusammenstellen?

Hier geht es offenbar um die Losungsmenge der diophantischen Gleichung

10x;+10x,+ 10x3+ 10 x4+ 10 x5+ 20 xg + 20 x7 + 20 x5 = 50,
die sofort durch die 4quivalente Gleichung
X1+ X2+  x3+ x4+ x5+ 2x6+ 2x7+ 2xg=95

ersetzt werden kann.

Da die Frankatur-Werte 10 und 20 in mehreren Marken-Typen zur Verfiigung stehen,
hat man es auf Anhieb nicht mit Partitionen im bisherigen Sinne zu tun. Man kann
aber die vorliegenden kombinatorischen Figuren dennoch als Partitionen inter-
pretieren, wenn man die den verschiedenen Marken-Typen entsprechenden Summan-
den mit einem spezifischen Etikett versieht. Dazu kann man z. B. die Farben der
einzelnen Briefmarken verwenden. Auf diese Weise lisst sich eine Referenz-Menge
definieren, die etwa aus je einer Zahl 10 mit dem Etikett rot, blau, gelb, griin und
violett und aus je einer Zahl 20 mit dem Etikett rot, blau und gelb besteht. Das
bisherige Figuren-Modell wird damit auch auf die neue Situation anwendbar.

In Anlehnung an die Einkleidung in der Aufgabe 3 spricht man bei Vorliegen einer
Referenz-Menge mit ,,verschieden gefarbten“ gleichwertigen Elementen von einem
Frankatur-Problem.

Der folgende Drucker-Output (linker Teil) zeigt die zur diophantischen Gleichung

X1+ X+ X3+ x4+ x5+ 2x6+2x7+2x3=n

FARTITIONEN UCPCR OER
REFERENZ ~MENGE PARTITIONEN UEBER DER

REFERENZ-MENCE

£3.0.0.8,8.2.2.27
£1.1.3.2]

INDEX PARTITIONSZAML
INOEX PARTITIONSZAML

$

a

1 5 2 :
2 P

3 sa
L) 121 3 22
* 35
) sz8 S se
> s68 s 8e
8 1710 2 120
s 2906 g 165
s 220

18 1632
11 7388 18 206
12 11268 11 384
13 16830 12 +S8
14 24552 13 s60
19 sE85

1S 35112
10 *+333S & o1
12 es211 :: ‘f:z

18 92350
19 129982 is 1330
19 1840

z0 186023
20 1991

RECHENZ! ¢ 099003
" EXT \ RECHENZEIT: Q00002
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gehorende Anzahl-Folge bis zum Hochst-Index n = 20. Insbesondere kann man daraus
entnehmen, dass fs=261 ist; es gibt also 261 verschiedene Frankaturen, die den
Forderungen der Aufgabe 3 geniigen. Mit dem Auflist-Algorithmus gemiss Ab-
schnitt 3 konnten diese 261 Figuren problemlos aufgezihit werden (siehe Seite 170).

Auch die spezielle diophantische Gleichung

xXp+x+x3+...+x,=n, x;€ Nu {0} (5.1)
kann mit unsern beiden Algorithmen erschlossen werden. In diesem Falle lassen sich
die Losungen auch mit ganz elementaren Uberlegungen abzihlen.
Steht etwa die Gleichung

}Cl +x;+x3+x4=10
zur Diskussion, dann betrachte man die simtlichen Worter aus 10 Zeichen 1 und
3 Zeichen /. Jedes dieser Worter représentiert offenbar gerade eine Lésung unserer
Gleichung, was sofort aus den folgenden Beispielen abgelesen werden kann:

11 /71177111111 = x=2, x3=2, x3=0, x4=6

N st Nyt N Net———, ————

2 2 0 6

/111 /711111711 - x=0, x3=3, x3=5, x4=2

et N et N

0 3 5 2

1111111101107 7/77 - x=10, x;=0, x3=0, x4=0

10 000

Bei der allgemeinen Gleichung (5.1) wird man auf Worter der Linge n+p—1
gefiihrt, die aus genau n Zeichen 1 und p—1 Zeichen / bestehen. Die Anzahl
derartiger Worter ist

.ﬁ=(n+p'1). (5.2)
p—1

Mit unserem Abzidhl-Algorithmus kann also insbesondere auch die Folge der
Binomial-Koeffizienten mit fester Unterzahl erzeugt werden. Bemerkenswert ist, dass
man dabei ohne irgendwelchen formalen Zusammenhang iliber Binomialkoeffizienten
auskommt. Der letzte Drucker-Output zeigt einen Teil der Folge (5.2) fiir p = 4.

Die Losungen der diophantischen Gleichung (5.1) beinhalten additive Zerfillungen
der Zahl n in genau p Summanden iiber der Menge der nicht-negativen ganzen Zahlen,
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wobei jetzt deren Reihenfolge mitberiicksichtigt wird. So sind jetzt etwa 2+ 3+ 0+ 5
und 3+ 5+ 0+ 2 zwei verschiedene Zerfillungen der Zahl 10. Additive Zerfdllungen
unter Beriicksichtigung der Summanden-Reihenfolge werden in der Kombinatorik als
Kompositionen bezeichnet.

M. Jeger, Mathematik-Departement ETH Ziirich
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Aufgaben

Aufgabe 950. Man bestimme den kleinsten Wert, den der Durchmesser (d.i. der maxi-
male Abstand von zwei Punkten) einer ebenen nichtkollinearen Menge von vier Punk-
ten mit paarweise ganzzahligen Abstinden annehmen kann.

H. Harborth, Braunschweig, BRD

Losung: Der gesuchte kleinste Wert ist 4. Tatsdchlich haben beide Diagonalen des
gleichschenkligen Trapezes mit Linge 3 bzw. 4 der parallelen Seiten sowie Schenkel-
lange 2 die Lénge 4, womit der Durchmesser dieses Trapezes gleich 4 ist.
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