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Proof. Any s of the wt9s add to at least (f)
<=> any n-sof the w,'s add to at most (2) - (2)
<=» any r ofthe w?s add to at most (2) - (n2)

[1 + 2+ + («-l)]-[l + 2 + +(«-r-l)]
(« - 1) + (« - 2) + + (« - r)

V W Bryant, Department of Pure Mathematics,
Sheffield University
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Didaktik und Elementarmathematik

Kombinatorik mit dem Computer: Partitionen und Frankaturen

1. Einleitung

In den verschiedensten Gebieten der Mathematik sieht man sich vor Probleme
gestellt, die auf die Abzahlung oder die Auflistung bestimmter Partitionen hinauslaufen

Als Partitionen bezeichnet man in der Kombinatorik additive Zerfallungen
einer natürlichen Zahl « mit Summanden aus einer vorgegebenen Referenz-Menge,
wobei die Reihenfolge der Summanden in einer solchen Figur belanglos ist Die
folgende Aufzahlung zeigt die möglichen Partitionen der Zahl 20 uber der Referenz-
Menge {2, 3, 7}

31-3+7-1-?
2i-3i-3i-3i-3t3t3
2i-2t3t3t3t7
2t2t2t7t7
2-f2i-2r2i-3r3T3-r3

2t2r2rZt2^3r7
2r2r2r2r2r2r2r3r3
2t2t2t2t2t2t2t2t2t2
ANZAHL DER FIGUREN 8

Die Summanden in den einzelnen Figuren sind hier nach zunehmenden Werten
geordnet
Kommt in einer Partition der Zahl « uber der Referenz-Menge

{«1,02» >üp
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der Summand o, genau xy-mal vor, dann gilt

ax xx + a2x2 + + apxp n. (1.1)

Die Menge der Partitionen mit den genannten Parametern erweist sich damit als

äquivalent mit der Lösungsmenge der diophantischen Gleichung (1.1), wenn
nichtnegative ganze Werte x} vorausgesetzt werden. Dieser Zusammenhang macht die
Partitionen zugleich zu einem Gegenstand der Zahlentheorie.
Während das Auflisten von Partitionen bislang eine recht mühsame Aufgabe war, gibt
es schon lange eingehende Untersuchungen zum Abzählen von Partitionen-Mengen.
Erste systematische Untersuchungen über Partitionen finden sich bei L. Euler in
dessen „Introductio in Analysin infinitorum" aus dem Jahre 1748 [1*]. Später hat
J. J. Sylvester eine generelle Abzähltheorie für Partitionen aufgestellt [2*]. Grundsätzlich

kann auf dieser Basis zu jeder Referenz-Menge für die Anzahl /„ der Partitionen
von « eine Formel hergeleitet werden. Insbesondere hat Sylvester gezeigt, dass aus der
Referenz-Menge {ax,a2,... ,ap} die formale Potenzreihe [3*]

1 °°

y f v« (\
(1-jc'OO-**)... (1-JC*) »-0

"

hervorgeht.
Die Sylvestersche Theorie ist leider mit dem Nachteil behaftet, dass sich die
Bestimmung der Koeffizienten-Terme /„ mit zunehmendem Umfang der Referenz-
Menge und wachsenden Werten der a} schon bald als unpraktikabel erweist. So erhält
man etwa für die Referenz-Menge {1, 2, 5} die abzählende Potenzreihe

1 °°

(l-x)(l-^)(l-x5)=n?o/wXW*
2n_

Die Partialbruchzerlegung der linken Seite lautet mit co=e 5

1 1 1 1 1 13 1 1 1

¦ + — :? + — + "

(1-jc)(1-x2)(1-jc5) 10 (1-jc)3 4 (l-x)2 40 l-x 8 l+x
1 1 / co3 co2 co 1

• + -

5 (l-co-co2+co3) \(l-cox) (l-co2x) (l-co3x) (l-co4x))

Unter Abstützung auf die für beliebiges s e N geltende Entwicklung

1 * ln+s-l£."""_ '\anx*
(l-ax)s w=_o \ s-l

kann daraus die Abzähl-Formel

(« + 4)2 1

fn
20

+
2
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gewonnen werden [4*]. Dieses Beispiel lässt erkennen, dass die jeweils erforderliche
Partialbruchzerlegung der Reziproken zu einem Polynom ein ernsthaftes Hindernis
darstellt.
Im Umgang mit Partitionen hat m den letzten Jahren der Einsatz von Computern eine
gewisse Verschiebung der Akzente gebracht. Während Auflistungen von umfangreichen

Partitionen-Mengen erst mit Hilfe von Computern möglich geworden sind,
scheinen andererseits Abzähl-Formeln zusehends an Bedeutung zu verlieren. Die
sogenannte konstruktive Kombinatorik ist heute auch innerhalb des Problemfeldes der
Partitionen deutlich zu erkennen. Diese Entwicklung nachzeichnend möchte die
vorliegende Note je einen schnellen Algorithmus für das Abzählen und das Auflisten
von Partitionen über beliebigen Referenz-Mengen vorstellen.

2. Die Abzahlung von Partitionen

Zunächst wollen wir uns mit der Abzahlung der Partitionen über der Referenz-Menge

{ax,a2,...,ap}

im Lichte der Computer-Mathematik befassen. Insbesondere soll die endliche
Anzahl-Folge

f\ 9 f2 » • • • > fn

mit einem Rechner bestimmt werden. Um zu einem entsprechenden Algorithmus zu
gelangen, denken wir uns die vorgegebene Referenz-Menge über die Kette

{«il ~* {a\,a2} -> {ax,a2,a3} -* {ax, a2,... ap)

schrittweise aufgebaut. Zur &-elementigen Zwischenstufe {ax, a2,..., ak} möge die
Anzahl-Folge

/oW,/,W,/2W, ¦..,/_« (2.1)

gehören, wobei f£k) := 1 gesetzt ist. Diese Verlängerung der eigentlichen Anzahl-Folge
nach links wird sich gleich als sehr zweckmässig erweisen.
Es ist jetzt

fj=fj{p) für alle 0_sy_s«.

Wird nun zur Referenz-Menge {ax,a2, ...,ak] das Element ak+x adjungiert, dann gilt
für alle ak+x ^j _a «

/?+"-/?» + /£» + /#+»+¦- (2-2)

Die Summe ist jeweils so weit zu erstrecken, als der untere Index nicht-negativ
ausfällt. Das Glied ff£lak¥1 auf der rechten Seite zählt die Partitionen der Zahl./ über
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der neuen Referenz-Menge, in denen der zuletzt adjungierte Summand ak+x genau
«-mal vorkommt.
Die Summe (2.2) kann mit dem Glied f£k) endigen, namhch dann, wenn es zur Zahly
genau eine Partition mit lauter Summanden ak+x gibt. Eine allenfalls vorhandene
Figur dieser Art wird jetzt aufgrund der zuvor eingeführten Ergänzungswerte f£k) 1

korrekt mitgezahlt.
Bei Verwendung der Programmier-Sprache BASIC können die mit dem Übergang
von k zu k+l anfallenden Summen (2.2) durch folgende FOR-NEXT-Schleife
herbeigeführt werden:

FOR J A(K+1) TO N
F(j) F(J) + F(J-A(K+l)) (2.3)

NEXT J

Ist etwa ak+x 5 und « 20, dann bewirkt (2.3) die Ersetzungen

fs -fs +/o
fe '=fe +/i
fi '=fi +/2
fs :=/8 +/3
h '=/9 +/4
/io:== /io + fs

/20:=/20 + /l5

Da diese Ersetzungen in der notierten Reihenfolge realisiert werden, folgt daraus z. B.

f(k+l) _ f(k) f(k) f(k) f(*) y.(*)
/20 ~/20 W15 +/l0 ^/5 ^/0

und dies ist die Summe (2.2) für j 20.

Es zeichnet sich jetzt die Möglichkeit ab, die Zahlen

rip) f(p) rip)
JO ' il 9 •••» Jn

rekursiv zu berechnen. Wird die Referenz-Menge in DATA-Zeilen abgelegt, dann
kann die massgebende Anzahl-Folge über das anschließend in SIMONS-BASIC [5*]
notierte Rechner-Programm aufgebaut werden:

DIM F(N)
F(0)=1
K=l
LOOP
READ A
EXIT IF A > N
FOR J A TO N

F(J) =F(J) + F(J-A)
NEXT J
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K K+1
EXIT IF K > P

END LOOP

DATA P

DATA A(1),A(2),...,A(P)

Als Start-Folge ist

/o(0):=l,//0):=0,/2(0>:=0,..,/^-=0

zu wählen, dazu sind die Anweisungen

DIM F(N): F(0)= 1

erforderlich
Bei einem vorgegebenen maximalen Index « kommen nur jene Elemente der
Referenz-Menge zum Tragen, die kleiner als « sind Setzt man eine Anordnung der
Referenz-Menge in den entsprechenden DATA-Zahlen nach aufsteigenden Werten
voraus, dann kann man die LOOP-Schleife verlassen, sobald a > n ist (EXIT IF
A>N)
Im anschliessenden Rechner-Programm ist die Referenz-Menge

{1,2,5,10,20,50}

enthalten (DATA-Zahlen 1850 und 1890).

Rechner-Programm 1

1000
1010
1020
1030
10<}0
1050
1060
1070
1080
1030
1100
1110
1120
1130
1140
1150
1160
1170
1180
1150
1200
1210
1220
1230
1240
1250

REH xxxy.**x*%xxy.y-y.xx*x%x*x*y-,x%xx*%
REfl * ANZAHL PER PARTI TIONEN *
REfl X UEPER EINER REFERENZ-nENGE >
REtf :* CAi .A2. APJ *
REH > *
REH >< AKA2< „ <AP >
REH ^»»»»^^»»^»»'^•^»xxxx»

REH INFORMATION
PRINT CHR4C147D
PRINT PIE ELEMENTE PER
PRINT REFERENZ-MENGE
PRINT SINP IN PATA-ZEIt-eN
PRINT APZÜLCCCN I
PRINT

REI1 EINSÄßE
PRINT"0IS ZU WELCHEM INPEX N

PRINT SOLL PIE FOLGE PER
PRINT PARTITIONS-ZAHLEN
PRINT PESTIMMT WERDEN
PRINT
INPUT
Tli

INPEX N EINGEPEN
000000

:N

1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1330
1400
1410
1420
1430
1440
1450
1460
1470
1480
1430
1500
1510

PRINT CHRiC147_

REH LEGENDE
PRINT SPCC2. PARTITIONEN UEBER DER
PRINT SPCC2D REFERENZ-MENGE
PRINT

REH PARTITIONSZAHLEN BERECHNEN
Dill FCN_
READ P
FC0)=1
K=l: Ri= C

LOOP
READ A
A4=STR4CA3: L=L£NCA4_
EXIT IF A>N
Ri=Ri*RI(_HT4tAi.L-l Df
: FOR J=A TO N

: FCJ 3=FCJDfFCJ-AD
: NEXT J
K=Kfl
EXIT IF K>P
END LOOP
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1520 ;

1530 REM REFERENZ-MENGE AUSDRUCKEN
1540 L-LENCR4D
1550 R4=LEFT4CR4.L-1Dr ]
1560 PRINT SPCC5DRi
1570 PRINT
1580 :

1530 :

1600 REM TABELLE AUSDRUCKEN
1610 PRINT SPCC4D INPEX ;

1620 PPINT SPCC2D PARTITIONSZflHL
1630 r^INT
1640 EXEC OUTPUT
1650 PRINT
1660 PRINT RECHENZEIT: ISPCC2DTI4
1670 ENP
1680 :

1630 :

1700 REM PROZEPUP OUTPUT

1710 PROC OUTPUT
1720 U=0
1730 FOR 1=1 TO N

1740 U=Ut1
1750 I4-STR4CID: L_=LENCI£_
1760 PPINT SPCCS-LDIij
1770 Fi=STR4CFCIDD: L=LENCF4D
1780 PPINT SPCC10-LDFi
1730 IF FRACCU./5D-0 THEN PRINT
1800 NEXT I
1810 ENP PROC
1820 :

1830 ;
1840 REM UMFANG PER REFERENZ-plENGE
1850 DATA 6
1860 ;

1870 :

1880 REM ELEHENTE PER REFERENZ-MENGE
1830 DATA 1.2.5.10.20.50

Mit dem vorliegenden Programm kann das folgende Geldwechsel-Problem gelöst
werden.

Aufgabel: In der Schweiz gibt es sogenannte Scheide-Münzen zu 1, 2, 5, 10, 20 und
50 Rappen Auf wieviele Arten kann man mit solchen Geldstücken Beträge von
10, 20,..., 100 Rappen zusammenstellen?

Hier sind zur genannten Referenz-Menge nur die Zahlen /10, f2o, /100 gesucht.
Man kann den Output auf diese Teilmenge beschränken, indem man die Zeile 1730 in
der Ausgabe-Prozedur wie folgt ersetzt:

1730 FOR 1= 10 TO N STEP 10.

Dem Drucker-Output kann entnommen werden, dass etwa der Betrag von 1 Franken
auf fx00 4562 Arten in Kleingeld ausbezahlt werden kann.

PARTITIONCM -COCR 0t_K
fterertenr-nerice

C1.2 5.1a 2B.Sai

IliO» t*AKTITiaN£Z*HL

pflRTiTioNeN ueeen ce*

Ci.2.5 xa 2a sa xaa saa iaaai
INOC* fflftTITIDMSZrtHL

2a «ti
3a iaa
«*a 236
sa «?SI

60 733
?a 1311
sa 2B6t
30 3121

laa «»S62

saa
iaaa

RCCMCM-CIT

S«2«»a?2
2na?2a«xt

RECHChc-CIT aaaoaa

Bemerkenswert ist die effektive Rechenzeit von nur 8 Sekunden; man hat sich zu
vergegenwärtigen, dass auch dem verkürzten Output eine 100-gliednge Anzahl-Folge
zugrunde liegt, die vollständig berechnet werden muss. Wir haben es hier
offensichtlich mit einem sehr schnellen Algorithmus zu tun.
Der Übergang zu einer andern Referenz-Menge kann durch entsprechendes
Überschreiben der DATA-Zeilen vorgenommen werden.
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Aufgabe 2: Auf wieviele Arten kann man Beträge von 500 Franken und 1000 Franken
mit Münzen zu 1, 2 und 5 Franken und Noten zu 10, 20, 50, 100, 500 und
1000 Franken zusammenstellen?

Die massgebende Referenz-Menge ist jetzt

{1, 2, 5,10, 20, 50,100, 500,1000}.

Mit der modifizierten Anweisung

FOR I 500 TO 1000 STEP 500

in der Ausgabe-Prozedur werden die beiden gesuchten Zahlen ausgedruckt.
Es sei darauf hingewiesen, dass mit dem präsentierten Rechner-Programm auch beim
Ausdrucken der Referenz-Menge nur jene Elemente berücksichtigt werden, die noch
in die vorgesehene Anzahl-Folge fx, f2,..., f„ eingehen.
Im Zentrum des dargelegten Abzähl-Algorithmus stehen die mit elementaren
Überlegungen gewonnenen Beziehungen (2.2). Wir wollen diese abschliessend auch noch
mit dem Abzählverfahren in Verbindung bringen, das mit Potenzreihen arbeitet.
Verpackt man die unendliche Folge

Jo » J\ »• • •' Jj ' • • •

in die Potenzreihe

00

<Pk(x)~Ylfjik)xJ,
7-0

dann beinhalten die Beziehungen (2.2) die Rekursionsformel

(pk+, (X) (1 + X**» + X2a™ +...)<pk(x)= L_lxqJ <Pk (X)

Wegen /0(0) 1, f{Q) 0 für j > 0 ist <pQ (x) 1 und damit

1 1_ L_9pW~ l-xa* l-x*>'- l-xa»

womit die Sylvestersche Reihe für die Partitionen über der Referenz-Menge
{ax, a2,..., ap} hergeleitet ist.
Unser Algorithmus ist ausgelegt auf die Berechnung der endlichen Folge

Jo »J\ »•••»/» •
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Diese Zahlen sind die Koeffizienten des sogenannten Vorpolynoms vom Grad n [6*]

<Pp7l)(x)=Yl f^xJ
7 0

der Potenzreihe (pp(x).
Der hier entwickelte Algorithmus kann übrigens leicht so modifiziert werden, dass die
Partitionen der Zahlen 1, 2, 3,..., n mit genau s Summanden aus der Referenz-Menge
{ax,a2, ...,ap} abgezählt werden. Auch dies ist eine Problemstellung der abzählenden
Kombinatorik, der man sich gelegentlich gegenübergestellt sieht. Da dieses neue
Abzählproblem eine 2-parametrige Abzähl-Folge impliziert, ist zu Beginn ein entsprechendes

2-dimensionales Parameter-Feld zu reservieren. Der Kern des modifizierten
Programmes lautet dann wie folgt:

DIM F(N,S)
F(0,0)=1
K=l
LOOP
READ A
EXIT IF A > N
FOR H 1 TO S

FOR J A TO N
F(J,H) F(J,H) + F(J-A,H- 1)

NEXT J

NEXT H
K K+1
EXIT IF K > P

END LOOP

DATA P

DATA A(1),A(2),...,A(P)

Anstelle von (2, 2) ist nämlich jetzt die Rekursionsformel

/*(*+l)_ Ak) Ak) Ak) (2a\J(j,h) ~ J(j,h) + J(j-ak+1,h-l) + J(j-2ak+1,h-2) + Vt-V

zuständig. Die Summe ist jeweils soweit zu erstrecken, als im Paar (j - r. ak+x, h- r)
beide Komponenten nicht-negativ ausfallen.
Gezählt werden mit dem neuen Algorithmus zugleich die Lösungen des diophantischen
Gleichungssystems

axxx + a2x2+'" + apxp=j ^,S)

X\+ x2-\ \- xp s

für j= 1,2,...,«.



164 El. Math., Vol. 42, 1987

3. Die Auflistung von Partitionen

Unser nächstes Ziel ist ein schneller Algorithmus für die Auflistung der Partitionen
zur Zahl « über der Referenz-Menge {ax, a2,..., ap} in der Form der Lösungsvektoren

(x\,x2,..., xp)

von (1.1). Wie in der Kombinatorik üblich, wollen wir fortan den Parameter « als
Index der betreffenden Figuren bezeichnen.
Jede Auflistung einer Figuren-Menge setzt die Festlegung einer bestimmten Reihenfolge

voraus. Der Auflist-Algorithmus besteht dann im wesentlichen in der
Konstruktion des Nachfolgers zu einer beliebigen Figur in der Liste. Im vorliegenden
Falle entscheiden wir uns für die rückläufige lexikographische Anordnung der
Lösungsvektoren, weil diese mit einer relativ einfachen Nachfolger-Konstruktion
einhergeht.
Beim gewählten Auflist-Konzept ergibt sich für die Referenz-Menge {2, 3, 5, 7} zum
Index « 18 der folgende Computer-Output:

PARTITIONEN UOM INDEX N= 18
UEBER DER REFERENZ-MENGE:

C 2 7 ]

IGUREN:

C 3. 0. 0 0D
C 6, 2. 0 2D
C 3. 4» 0 0D
C 0. 6. 0 0D
C 5, 1 1 0D

C 2. 3. 1 0D
C 4. 0. 2 0D
C 1 2, 2 03
C 0, 1 3 0D
C 4. 1 0 1 D

C 1 3. 0 1 D

C 3, 0. 1 1 D

C 0. 2. 1 1 D

C 2. 0. 0 2D

ANZAHL FIGUREN: 14

RECHENZEIT:000006

Wir wollen daran die anschliessend dargelegte Nachfolger-Konstruktion exemplarisch
einsichtig machen.
Um von einem bestimmten Lösungsvektor

(x\,x2,..., xp)

zum Nachfolger zu gelangen, suche man zunächst den kleinsten Komponenten-Index

j > 1 auf mit der Eigenschaft, dass Xj unter alleiniger Berücksichtigung der gerade
vorhandenen Werte von Xj+x,Xj+2, ...,xp um eine Einheit erhöht werden kann.
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Ein solcher Sprung an der Stelle j ist genau dann möglich, wenn

p

aj(Xj+l)^n- Yl ahxh (3.1)
A=/+l

ist. Die entsprechende Abfrage legt die Einführung des Rechen-Parameters

p

s= Yl anXh

nahe, dessen Wert mit jeder Änderung von j nachzuführen ist. Sobald der Sprung-
Index j feststeht, sind die Anweisungen

xx := (n — s)/ax, x2 := 0, x3 := 0,..., *,_ x := 0 und j := 1

vorzunehmen. Falls nun xx ganzzahlig ausfällt, ist die Nachfolger-Figur gefunden.
Andernfalls benutze man den erhaltenen nicht-zulässigen Vektor als neue Start-
Figur.
Beim vorangestellten Beispiel kann etwa im Lösungsvektor (0, 1,3,0) erst die
4. Komponente um eine Einheit erhöht werden. Nach Ausführung dieses Sprunges
gelangt man zum Vektor (11/2, 0,0,1). Da dessen erste Komponente nicht ganzzahlig
ist, hat man von diesem Vektor ausgehend den nächsten Sprung-Index aufzusuchen;
dieser liegt bei j 2. Die Ersetzung x2 := x2+ 1 ergibt nun den Vektor (8/2, 1,0, 1)

und dies ist die nächste Figur in der Liste.
Die gegebene verbale Umschreibung des Auflist-Algorithmus kann nun sofort in ein
Fluss-Diagramm umgesetzt werden (siehe Seite 166).

Da unserem Auflist-Algorithmus eine auf wenigen Rechenschritten beruhende
Nachfolger-Konstruktion zugrunde liegt, sind relativ kurze Rechenzeiten zu erwarten. Das
vorangestellte Rechenbeispiel bestätigt diese Vermutung.

4. Die freien Partitionen

Bis jetzt wurden nur Partitionen über einer Referenz-Menge

R {ax,a2,...,ap}cz N

betrachtet, d.h. R war eine endliche Teilmenge von _V. Wir lassen nun die
Beschränkung auf Teilmengen von N fallen und setzen R N. Man spricht dann von
freien Partitionen vom Index «. Bei dieser Öffnung der Referenzmenge tritt an die
Stelle von (1.1) die diophantische Gleichung

xx + 2x2+ nxn n. (4.1)
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Fluss-Diagramm
Auflist-Algorithmus für Partitionen vom Index «

INPOT N

P

einlesen

DIM A(P),X(P)

Koeffizienten
AU), A(2), A(P)
einlesen

*

V: 0
S: 0

J: 1

XU):= INT(N/AU))

U).X(l)« N>

PROZEDUR

FIGUR

Fluss-Diagranm
Auflist-Algorithmus für Paxtitionen von Indexn n

Schleife A; besorgt die Bestininung des Spnxng-Index j
und die Nachführung von s

Schleife B; bewirkt die Rückstellungen

x:=Of x :=0, x :__ o
2 3 D-l

und setzt j auf 1.

Start-Vektor

Schleife A

J v P

S:= S-A(J).X(J)
X(J):» X(J)+1

(J).X(J >N-

PRI-7T V

END

X(J):= X(J)-1

S:= S+A(J).X(J)
XU):«CN-S)/A(1)

(x(i))=o_;
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Grössere Summanden als « können nämlich bei einer additiven Zerfällung der Zahl «
nicht auftreten, d.h. bei den freien Partitionen vom Index « kommen jeweils
nur die Summanden aus _V„ {1, 2,..., «} zum Tragen.
Die Gleichung (4.1) ist in verschiedenen Gebieten der Mathematik anzutreffen. So
beschreibt z.B. jeder Lösungsvektor von (4.1) eine mögliche Zyklen-Struktur in der
Gruppe ®„ der Permutationen von « Objekten (symmetrische Gruppe vom Grad «).

Zyklen-Struktur (2,1,0, 1,0,0,0,0)

A 1

Q 0 ('j4 *

Die Fig. 1 zeigt den Di-Graphen zu einer Permutation ol aus ®8 mit der Zyklen-
Struktur (2,1,0, 1,0,0,0,0), d.h. a zerfällt in 2Zyklen der Länge 1 und je einen
Zyklus der Längen 2 und 4.

Wir betrachten jetzt die Anzahl der Lösungen von (4.1) in nicht-negativen ganzen
Zahlen mitpn. Mit der Folge der Partitionszahlen

P0> P\9 P2> •> Pn^ (Po:== 1)

werden aufgrund der letzten Bemerkungen zugleich die Zyklen-Strukturen in den
Gruppen S„ abgezählt. Andererseits weist diese Folge auch mancherlei Bezüge zur
Zahlentheorie auf [7*].
Die beiden präsentierten Algorithmen für die Abzahlung und für die Auflistung von
Partitionen über endlichen Referenz-Mengen können problemlos auf die freien
Partitionen übertragen werden.
Für das Abzählen der Figuren bis zu einem vorgegebenen Höchstindex « reicht _V„

als Referenz-Menge aus. Diese kann jetzt zusammen mit der Konstruktion der
Koeffizienten f^k) sukzessive hineingebracht werden, was die früheren DATA-Zeilen
entbehrlich macht. Der Abschnitt des Rechner-Programms, der den mathematischen
Kern des Algorithmus enthält, ist dann wie folgt zu modifizieren:
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Rechner-Programm 2

1350 REH HflUPTFROGRAfin
1360 DIH PCND
1370 PC03=l; A=0
1380 LOOP
1390 fi=fi+l
1400 EXIT IF A>N
1410 : FOR J=ß TO N

1420 : PCJ )=PCJ D-tPCJ-ftD
1430 : NEXT J

1440 END LOOP
1450 EXEC OUTPUT
1460 PRINT
1470 PRINT RECHENZEIT :SPCC2DTH
1480 END

Darin sind die früheren Parameter^ in Anpassung an die neue Bezeichnungsweise
durch Pj ersetzt. Der anschliessende Rechner-Output zeigt eine Tafel der ersten
100 Partitionszahlen (« 100). Bemerkenswert ist wiederum die kurze Rechenzeit von
nur 1'20" (Rechner Commodore C 64).

ANZAHL DER
FREIEN PARTITIONEN
UOfl INDEX N

INDEX PARTI"1riONSZAH

1 1

2 2
3 3
4 S
5 7

0 11
15

8 22
9 30

ia 42

n S6
12 7?
13 101
14 135
15 170

18 231
1? 23?
18 385
19 430
20 «2?

21 732
22 1002
23 12SS
24 1575
2S 1358

26 2436
2? 3010
2S 3718
23 4565
30 560+

31 6042
32 8349
33 10143
34 12310
35 14883

36 17377
3? 21637
38 26015
39 31185
40 37338

41 44563
42 53175
43 63201
44 7S17S
4S 83135

46 105558
47 124754
48 147273
49 173525
50 204226

51 233343
52 291583
53 323331
54 3861SS
55 451270

56 S20823
57 614154
58 715220
33 831*20
00 36040?

61 1121SOS
02 13001S0
03 1505433
04 1741030
65 2012558

66 2323520
67 2673683
68 308773S
63 3SS434S
70 4087368

71 46372B5
72 5332783
73 6185683
74 7083588
75 8118264

76 3283831
7? 10613863
78 12132104
73 13848650
80 1S730470

81 1808432?
82 205062SS
83 23338403
04 26543000
85 301073S?

86 34262302
8? 38887073
88 44108103
83 4333532S
30 56034173

31 04112353
32 7253380?
33 8201017?
94 32663720
35 104651413

36 11814.4304
3? 133230330
30 15813013«
33 1632Z307S

100 190S03232

RCCHCNZCIT: 000126

Im Auflist-Algorithmus für die Figuren vom Index « können im Falle der freien
Partitionen verschiedene Vereinfachungen vorgenommen werden. Zum einen sind
jetzt die erste und die letzte Figur in der Liste bekannt: Am Anfang der Liste steht
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nämlich der Lösungsvektor («, 0,0,..., 0,0) und Schluss-Figur ist jeweils der Lösungsvektor

(0,0,0, ...,0,1). Andererseits ist der berechnete Wert von xx wegen der
besonderen Struktur der Gleichung (4.1) immer ganzzahlig, so dass die entsprechende
Abfrage auf Ganzzahligkeit entfallen kann. Der aufgrund dieser Überlegungen
verkürzte Auflist-Algorithmus für die freien Partitionen vom Index « ist im
anschliessenden Fluss-Diagramm festgehalten.

Fluss-Diagramm
Algorithmus fur die Auflistung der freien Partitionen
vom Index n

_
INPOT N

l

DIM X(N)

V:= 0

S:= 0

J-= 1

X(l):= N erste Figur

PROZEDUR

FIGUR

X(N)= 1 PRINT
END

J:= J+l
S:= S - J.X(J)

X(J):= X(J)+1

X(J)

nein

iX(J):= X(J)-1

:¦ S + J.X(J)
XU): « N^-S

J:- J-l

X(J):= 0 J > 1

uor» inoex n

N» 10

FIGUREN:

C10. 0. 0. 0. 0. 0. 0. 0. 0. 03
C 8. 1, 0. 0. 0. 0, 0. 0. 0, 0.
C 0. 2. 0, 0. 0. 0, 0, 0, 0. 0.
C 4. 3, 0. 0. 0. 0. 0. 0. 0. 03
C 2, 4. 0. 0. 0. 0, 0. 0, 0. 03

C 0, 5, 0. 0, 0. 0, 0. 0. 0. 03
C 7. 0, 1. 0. 0. 0. 0, 0. 0. 03
C 5. 1, 1. 8, 0. 0. 0. 0. 0. 03
C 3. 2. 1. 0. 0. 0. 0, 0. 0. 03
C 1. 3, 1. 0. 0. 0. 0, 0. 0. 03

C 4. 0, 2. 0. 0. 0. 0. 0. 0. 03
C 2. 1. 2. 0. 0. 0. 0, 0. 0. 03
C 0. 2. 2. 0. 0. 0, 0, 0. 0. 03
C 1. 0. 3. 0. 0. 0. 0. O. 0. 03
C 0. 0. 0, 1. 0, 0, 0, 0, 0. 83

C 4. 1. 0- 1. 0. 0. 0, 0. 0. 03
C 2. 2. 0. 1. 0. 0. 0. 0. 0. 03
C 0. 3. 0. 1. 0. 0. 0, 0, 0, 03
C 3, 0. 1. 1, 0. 0. 0. 0. 0. 03
C 1, 1- 1. 1. 0. 0. 0, 0, 0. 03

C 0, 0, 2, 1. 0. 0. 0. 0. 0. 03
C 2. 0. 0. 2. 0. 0. 0, 0. 0. 03
C 0. l. 0, 2. 0. 0. 0, 0. 0. 03
C 5. O. 0. 0. 1. 0. 0. 8. 8. 03
C 3. 1. O. 0. 1. 0. 0, 0. 0. 03

C _„ 2. 0. 0. 1.
C 2. 0. 1. 0. 1.
C 0. 1. 1. 0. 1.
C 1. 0. 0. 1. 1.
C 0. 0. 0. 0. 2.

0. 0. 0
0. 0. a
0. 0, 0
0. 0. 0
0. O. 0

0. 03
0. 03
0. 03
0. 03
0. 03

C 4, 0. 0. 0. 0. 1. 0. 0. 0. 03
C 2. 1. 0, 0. 0, 1. 0. 0. 0. 03
C 0. 2. 0. 0. 0. 1. 0. 8, 8. 03
C 1. 0. 1. 0. 0. 1. O. 0. 0. 03
C 0- 0, 0, 1. 0. 1. 0. 0. 0. 03

C 3.
C l,
C 0.
C 2.
C 0,

0. 0. 0. 0. 1. 0.
0. 0. 0.0. 1, 0.
1.0,0,0. 1.0.
0. 0, 0. 0. 0. 1.
0.0.0.0.0.1.

0. 03
0, 03
0. 03

C 1. 0. O. 0. 0. 0. 0. 0. 1. 03
C 0. 0. 0. 0. 0. 0. O. 0. 0. 13

ANZAHL. flCURCN: *2

RECWENZEIT:000020

5. Frankatur-Probleme

Mit den beiden Primär-Algorithmen können auch noch gewisse Fragen aus der
Kombinatorik geklärt werden, die auf den ersten Blick nicht mehr zum Problemfeld
der Partitionen zu gehören scheinen. Als Aufhänger für die folgenden
Schlussbetrachtungen diene die
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Aufgabe 3: Die schweizerische Postverwaltung hat zu einem gewissen Zeitpunkt 5

verschiedene 10-Rappen-Marken und 3 verschiedene 20-Rappen-Marken im Umlauf.
Auf wieviele und auf welche Arten kann man damit ein Porto im Betrage von
50 Rappen zusammenstellen?
Hier geht es offenbar um die Lösungsmenge der diophantischen Gleichung

10X! + 10*2+ IOJC3+ IOX4+ 10jc5 + 20 jc6+20x7+ 20x8 50,

die sofort durch die äquivalente Gleichung

xx+ x2+ x3+ x4+ x5+ 2x6+ 2xy+ 2x8 5

ersetzt werden kann.
Da die Frankatur-Werte 10 und 20 in mehreren Marken-Typen zur Verfügung stehen,
hat man es auf Anhieb nicht mit Partitionen im bisherigen Sinne zu tun. Man kann
aber die vorliegenden kombinatorischen Figuren dennoch als Partitionen
interpretieren, wenn man die den verschiedenen Marken-Typen entsprechenden Summanden

mit einem spezifischen Etikett versieht. Dazu kann man z.B. die Farben der
einzelnen Briefmarken verwenden. Auf diese Weise lässt sich eine Referenz-Menge
definieren, die etwa aus je einer Zahl 10 mit dem Etikett rot, blau, gelb, grün und
violett und aus je einer Zahl 20 mit dem Etikett rot, blau und gelb besteht. Das
bisherige Figuren-Modell wird damit auch auf die neue Situation anwendbar.
In Anlehnung an die Einkleidung in der Aufgabe 3 spricht man bei Vorliegen einer
Referenz-Menge mit „verschieden gefärbten" gleichwertigen Elementen von einem
Frankatur-Problem.
Der folgende Drucker-Output (linker Teil) zeigt die zur diophantischen Gleichung

xx + x2 + x3 + X4 + x$ + 2x6 + 2x-i + 2x% n

rAATiTtoncr« ucpca 0C*
REfCRCNZ -nenee

£1.1. 1.1.1.2.2 .21

Xfioex fARTITIONSZjWt.

0 1

1 5
2 10
3 58
4 121

261
6 520
7 368
0 1718
3 2886

10 4632
11 7388
12 11286
13 16838
14 24552

15 35112
16 43335
17 68211
18 32350
13 124382

20 1800C9

RECHCNZCXTr 000809

fftRTITIONCN UCPeR DER
REFERCNZ-rtCNBC

-1.1.1.13
inoe* r^miTtoficzAH-.

-8
1«

10
13

l£0
165

364
4SS

•1«
303

RECMENZe XT: 000002
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gehörende Anzahl-Folge bis zum Hochst-Index « 20 Insbesondere kann man daraus
entnehmen, dass /5 261 ist, es gibt also 261 verschiedene Frankaturen, die den
Forderungen der Aufgabe 3 genügen Mit dem Auflist-Algorithmus gemäss
Abschnitt 3 konnten diese 261 Figuren problemlos aufgezahlt werden (siehe Seite 170)

Auch die spezielle diophantische Gleichung

xx+x2 + x3+ +Xp n, xteNu{0} (5 1)

kann mit unsern beiden Algorithmen erschlossen werden In diesem Falle lassen sich
die Losungen auch mit ganz elementaren Überlegungen abzahlen
Steht etwa die Gleichung

xx+ x2 + x3 + x^= 10

zur Diskussion, dann betrachte man die samtlichen Worter aus 10 Zeichen 1 und
3 Zeichen / Jedes dieser Worter repräsentiert offenbar gerade eine Losung unserer
Gleichung, was sofort aus den folgenden Beispielen abgelesen werden kann

1 1 / 1 1 // 1 1 1 1 1 1 -> xx 2, x2 2, x3 0, x4 6

2 2 0 6

/ 1 1 1 / 1 1 1 1 1 / 1 1 - xx 0, x2 3, x3 5, x4 2

0 3 5 2

1111111111/// -> JC!=10, x2 0, x3 0, x4 0

10 0 0 0

Bei der allgemeinen Gleichung (5 1) wird man auf Worter der Lange n+p—l
gefuhrt, die aus genau « Zeichen 1 und p — 1 Zeichen / bestehen Die Anzahl
derartiger Worter ist

-(-;-;')/„= (52)

Mit unserem Abzahl-Algonthmus kann also insbesondere auch die Folge der
Binomial-Koefflzienten mit fester Unterzahl erzeugt werden Bemerkenswert ist, dass

man dabei ohne irgendwelchen formalen Zusammenhang uber Bmomialkoeffizienten
auskommt Der letzte Drucker-Output zeigt einen Teil der Folge (5 2) furp 4
Die Losungen der diophantischen Gleichung (5 1) beinhalten additive Zerfallungen
der Zahl n in genau p Summanden uber der Menge der nicht-negativen ganzen Zahlen,
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wobei jetzt deren Reihenfolge mitberucksichtigt wird So sind jetzt etwa 2 + 3 + 0 + 5

und 3 + 5 + 0 + 2 zwei verschiedene Zerfallungen der Zahl 10 Additive Zerfallungen
unter Berücksichtigung der Summanden-Reihenfolge werden in der Kombinatorik als
Kompositionen bezeichnet

M Jeger, Mathematik-Departement ETH Zürich
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[1*] Vgl L Euler Opera Omnia 1,8 Leipzig-Berlin 1922

[2*] Vgl [6],p 147 ff
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[4*] Vgl [4], p 104/105
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Aufgaben

Aufgabe 950. Man bestimme den kleinsten Wert, den der Durchmesser (d. 1. der maximale

Abstand von zwei Punkten) einer ebenen nichtkolhnearen Menge von vier Punkten

mit paarweise ganzzahhgen Abständen annehmen kann.

H. Harborth, Braunschweig, BRD

Lösung: Der gesuchte kleinste Wert ist 4. Tatsächlich haben beide Diagonalen des

gleichschenkligen Trapezes mit Länge 3 bzw. 4 der parallelen Seiten sowie Schenkellänge

2 die Länge 4, womit der Durchmesser dieses Trapezes gleich 4 ist.
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