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Therefore from (7) and (10) we obtain
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The author is grateful to the referee for his helpful suggestions.

G. Tsintsifas, Thessaloniki, Greece
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A tournament result deduced from harems

There is a large class of difficult problems of the type: "does there exist a graph with
« vertices having presenbed degrees dx,..., dnV Restricting the problem to particular

types of graphs can lead to some very neat characterisations. For example, it is a

straightforward exercise to show that a tree exists on «(i^2) vertices with degrees

dx,..., dn if and only if the dx,..., d„ are positive integers with

dx + + dn 2(n-l).

We shall now restrict attention to 'tournaments'. A tournament is a directed graph in
which each pair of distinct vertices is joined precisely once (in one direction or the
other). Alteraatively it can be thought of as a competition of a set of players in which
each pair plays once resulting in a win for one of the players. Before proeeeding, note
that, for example, there exists a tournament of 4 players in which their numbers of
wins are 1,1,2 and 2 (e.g. A beats B, B beats D, C beats A, C beats B, D beats A and
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D beats C) However, there exists no tournament of 6 players with totals of wins
0,1,1,4,4, 5 One way to see this is to note that any 3 players are involved in a total
of 5 + 4 + 3 games and so certainly the top 3 players cannot win a total of 5 + 4 + 4
Another way is to see that the bottom 3 players must have won between them at least
the 3 matches they played amongst themselves
Given non-negative integers wx, ,wn, to be able to construct a tournament of
« players with those numbers of wins it is clearly necessary that

wx+ +wn total number of games played (2), (1)

any r ofthe w/s must add to at most

(n-1) + (ii-2) + +(n-r) (2)

since those r players have only been involved in that number of games,

any s ofthe w,'s must add to at least (2) since those s players will have

played (2) games amongst themselves (3)

In fact, given condition (1), it is easy to see that (2) and (3) are equivalent It is a very
surpnsing result that given non-negative integers wx„ ,wn satisfying (1) and (3)
(or (1) and (2)) there does exist a tournament of « players with those numbers of wins
This is known as Landau's theorem and its proof of the sufflciency of these conditions
is usually a fairly involved argument concerning matrices or graphs (see [2] for
example) We shall deduce it a much simpler way from a result on marnages
I shall first remind the reader of HalPs marnage theorem and its generalisation to
harems From this latter result I shall then deduce Landau's theorem proving those

necessary and sufficient conditions for a tournament to exist with prescnbed numbers
of wins for each player
Hall's theorem, in its marnage form, says that in a set of boys and girls it is possible
to find for each boy a different girl whom he knows if and only if any subset B of the
boys knows, between them, at least | B | girls (The female partners can be thought of
as wives for the boys Vanous forms of Hall's theorem can be found, for example, in
[l]and[3]
The 'harem problem' is a well-known and natural extension of Hall's theorem it
concerns a set of boys requiring vanous numbers of wives

Theorem. Let wx, ,wn be non-negative integers and assume that boys bx, ,bn
wish to find, respectively, wx, w„ different female partners whom they know This
can be done if and only if any subset B {b,19 blr} of the boys knows, between
them, at least wh + + wh girls

Proof. Consider a new set of boys in which each of the onginal boys bt is duphcated
to give wt copies of that boy, and such that each duphcated boy has the same girl-
fnends as the original Then it is not hard to see that
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in the original Situation the boys bx,..., bn can be found wx,..., wn 'wives'
respectively

<=> in the new Situation each boy can be found a wife
<=> in the new Situation any set B* of boys knows at least \B*\ girls

(Hall's theorem)
<=> in the original Situation any set B {bh,.. .,blr} of boys knows at least

wh+ + wlr girls.

Hence the harem result follows.

We are now able to deduce our results on tournaments.

Theorem. Let wx,..., wn be non-negative integers whose sum is ("). Then a tournament

of « players exists in which the players win totals of wx,..., w„ games, respectively,

if and only if any r of the vv/s add to at most

(«-l) + («-2) + + («-r).

Proof. Consider a collection of « boys bl9..., bn and (2) girls gXfX,gx,2,..., gn-\,n
such that girl gl} is known by just boys bt and br By regarding boy bx (or bj) marrying
girl ghJ as the /th (oryth) player winning the game between players i andj it is clear
that we can switch from tournaments to marriage (and back) and deduce that

there exists a tournament of « players winning wx,..., wn games
<=> in the new boy/girl Situation the boys bx,..., bn can be found wx,..., w„

wives, respectively
<» in the new boy/girl Situation any set of boys {bh,.. .,blr] knows between

them at least wtl + + wlr girls (the harem result)
[Note that, by the construction of the boy/girl relationships, r boys know
between them exactly

(n-l) + (n-2) + + (n-r)
girls.]

<*> in the new boy/girl Situation any set of boys {bh,..., blr} satisfies

(« — 1) + + (« — r) ü_ wh + + wh

<=> any r of the w,'s add to at most

(n-l) + (n-2) + + (n-r).

The required result follows.

Corollary (Landau's theorem). Let wx,..., wn be non-negative integers whose sum
is (2). Then a tournament of « players exists in which the players win totals of
w>i,..., wB games, respectively, if and only if any s of the w,'s add to at least (2).
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Proof. Any s of the wt9s add to at least (f)
<=> any n-sof the w,'s add to at most (2) - (2)
<=» any r ofthe w?s add to at most (2) - (n2)

[1 + 2+ + («-l)]-[l + 2 + +(«-r-l)]
(« - 1) + (« - 2) + + (« - r)

V W Bryant, Department of Pure Mathematics,
Sheffield University
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Didaktik und Elementarmathematik

Kombinatorik mit dem Computer: Partitionen und Frankaturen

1. Einleitung

In den verschiedensten Gebieten der Mathematik sieht man sich vor Probleme
gestellt, die auf die Abzahlung oder die Auflistung bestimmter Partitionen hinauslaufen

Als Partitionen bezeichnet man in der Kombinatorik additive Zerfallungen
einer natürlichen Zahl « mit Summanden aus einer vorgegebenen Referenz-Menge,
wobei die Reihenfolge der Summanden in einer solchen Figur belanglos ist Die
folgende Aufzahlung zeigt die möglichen Partitionen der Zahl 20 uber der Referenz-
Menge {2, 3, 7}

31-3+7-1-?
2i-3i-3i-3i-3t3t3
2i-2t3t3t3t7
2t2t2t7t7
2-f2i-2r2i-3r3T3-r3

2t2r2rZt2^3r7
2r2r2r2r2r2r2r3r3
2t2t2t2t2t2t2t2t2t2
ANZAHL DER FIGUREN 8

Die Summanden in den einzelnen Figuren sind hier nach zunehmenden Werten
geordnet
Kommt in einer Partition der Zahl « uber der Referenz-Menge

{«1,02» >üp
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