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A generalization of a two triangle inequality

1. Introduction

By coupling an inequality of Bottema [1] together with one of Pedoe [1], O. Bottema
and M. S. Klamkin obtained the two chain inequality

a'x + b'y + c'z
P
— + SFF'
2

1/2

4Y~FF7,

see [2], where P Yl a'2(b2 + c2 - a2), x, y, z the distances of an interior point M of
the triangle ABC from the vertices A, B, C, a, b, c and a', b', c' the sides ofthe triangles
ABC and A'B'C and F, F' their area respectively.
In this note the author will generalize the part

a'x + b'y + c'z^4Y FF'

of the above inequality for two simplices s(n)=(AxA2...An+x) and s'(n)=(A'xA'2...A'n+i).

2. Notations

We denote by V(W) the volume of the simplex W, s^n) (AxA2...An + x),
s'(rt) (A\A'2... A'n +,) two simplices of En. The facets

(AxA2...At-XAt+x ...An+X)9 (A[A'2... A't-XA'l+i ...A'n+X)

will be denoted by ^(n_1), •sl'(w~1) respectively.
Suppose that M is an interior point of the simplex s^ with distances AlM xl. We

put:

D=YlxlV(s^-^).
i~i
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Figure 1

The quantity D depends on the labeling of the vertex set but for every case we can

prove:

3. Theorem

For two simplices s^n) and s'(n) holds:

n_ 2n-2
D2 n4-V 2(s{n))-V 2 (s'W).

Proof: We assume that the simplex/>(n) (BXB2... Bn) is similar to s'(rt) and inscribed
in s^n\ so that B, e sln~l\ We also consider the simplex q(n) (CXC2... Cn+X) similar
to s'W and circumscribed to s(n) so that At e q^~l\ where q\n~X) (CXC2... Cl.xCl+x

Cn+X). It is known that:

Vn(sW) i__ V»-x(pW) • V(q&>),

see [3].

Suppose W' kW is the homothetical image of Wwith ratio k. We put:

0)

pi») Xs'M and q™ ps' (») (2)
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We can easily see that: x, • V(p(;n~X)) =s nV(AlBxB2 Bt-XBl+x... Bn+lM) and

xt' V(q{rX)) n V(CXC2... Cf.xCl+x... Cn+XM). From the above follows

«+iI xlV(p^-X)) nV(s^), (3)
,__i

Yl xlV(q^) nV(qn), (4)
i=\

wherep^~X) (BXB2... Bt.xBl+x... Bn+X).
See the figure, above, for the elementary case « 2. From (2) follows,

V(p\n-X)) kn-xV(s'^), (5a)

V(q\n~X)) =pn-xV(s'(n-X)) and (5b)

V(qW) =pnV(s'^), (5 c)

see (2).
Therefore from (3), (4), (5) we have:

kn~xD =nV(s^), pn-xD npnV(s'W) (6)

or,

D2 «2 V(s^) V(s'W) (7)
P

Using (1), (5 c) we take:

Vn(s(n)) x»i»-VvH-l(s'<n)) lkn~x\n -
- L.^ _ __= \Vn~2(^^

V2(qW) " ßi"V(s'V>) \ P
{

or,

K"~2(^^)M^)Vv(M))- (8)

But it is known that if V(q^n)) is minimum then _4, is the centroid of q^'^, see [4] or
[5], therefore

1 V(SW)
^ _: L (Q\

«"" V(qW) ' V '

From (8), (9) follows:

Vn~2(sin)) lkn-x\n
n2n

V"-2(s'{n))
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or,
n-2•

1 V n "(jW)
>

A-1
«2 n-2

V n (_?'<">)
H

153

(10)

Therefore from (7) and (10) we obtain

_2_ 2w-2
D2 n4V "(s{n)) V n (s'(n)).

The author is grateful to the referee for his helpful suggestions.

G. Tsintsifas, Thessaloniki, Greece
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A tournament result deduced from harems

There is a large class of difficult problems of the type: "does there exist a graph with
« vertices having presenbed degrees dx,..., dnV Restricting the problem to particular

types of graphs can lead to some very neat characterisations. For example, it is a

straightforward exercise to show that a tree exists on «(i^2) vertices with degrees

dx,..., dn if and only if the dx,..., d„ are positive integers with

dx + + dn 2(n-l).

We shall now restrict attention to 'tournaments'. A tournament is a directed graph in
which each pair of distinct vertices is joined precisely once (in one direction or the
other). Alteraatively it can be thought of as a competition of a set of players in which
each pair plays once resulting in a win for one of the players. Before proeeeding, note
that, for example, there exists a tournament of 4 players in which their numbers of
wins are 1,1,2 and 2 (e.g. A beats B, B beats D, C beats A, C beats B, D beats A and


	A generalization of a two triangle inequality

