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A generalization of a two triangle inequality

1. Introduction

By coupling an inequality of Bottema [1] together with one of Pedoe [1], O. Bottema
and M. S. Klamkin obtained the two chain inequality

ax+by+czz=

P 172
>+ 8FF’} = 4\ FF",

see [2], where P =) a’2(b*+ c2— a?), x, y, z the distances of an interior point M of
the triangle ABC from the vertices 4, B, C, a, b, c and a’, b’, ¢’ the sides of the triangles
ABC and A’B’C’ and F, F’ their area respectively.

In this note the author will generalize the part

ax+by+czz4)FF

of the above inequality for two simplices s™=(4,4,... A,4)) and s’ W=(A4{45... A1)

2. Notations

We denote by V(W) the volume of the simplex W, s®W=(4,4,...4,1),
s'M=(4"45... A}, ) two simplices of E™. The facets

(A1 As... AiAigy .. Anyy), (A145 .. Al Alyy . Apsy)

will be denoted by 5"V, s/ "~ respectively.
Suppose that M is an interior point of the simplex s® with distances 4, M = x;. We
put:

n+1

D=3 x; V(s ),
i=1
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Figure 1 1

The quantity D depends on the labeling of the vertex set but for every case we can
prove:

3. Theorem

For two simplices s and s’ ™ holds:

2n-2

n
Dlzn*-V2@t)y.-¥v 2 (™),
Proof: We assume that the simplex p™ = (B, B,... B,) is similar to s’™ and inscribed
in 5™, so that B; € s""D. We also consider the simplex g™ = (C,C,... C,,) similar

to s’™ and circumscribed to s™ so that 4; € ¢V, where ¢"P = (C,C,... C;_1Ci4,
... Cy41). It is known that:

Ves®@)yz vt (p®) - vig™), )

see [3].
Suppose W’ = kW is the homothetical image of W with ratio k. We put:

pW=1s® and ¢®=pus® )
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We can easily see that: x;- V(p" "Y=nV(4,;B,B,... Bi_Bi,,... B,.;M) and
X V(q,("'l)) znV(C|C;y... Ci—1Citq ... Cpyy M). From the above follows

n+1
_Zl xi V(p" )= nv(s™), 3)
n+1
> xiV(@g" ) zav(gn, @)

i=1

where pl(n—l) = (BIBZ v s Bi—lBi+1 i B,H.]).
See the figure, above, for the elementary case n = 2. From (2) follows,

V(p" D)y =a"tv (), (5a)

Vigh™ ") =pu"' V(™) and (5b)

Vg™ =p"v('™), (5¢)
see (2).
Therefore from (3), (4), (5) we have:

ATID ZaV(s™)y, pu" D z=nu"V(s’®™) (6)
or,

ln—l

D2 = n2V(s™) v (s’ ™). (7)

Using (1), (5¢) we take:

n(-(m n(n—1) yyn—1,.7(n) n—1\n
Vi) L OOV @) (2N oy
Vig™) T v ®)

or,

V(S(")) )2 . (An-—l

§ n—2¢.s(n)
) =] e ®

Vn—Z(S(n))(

But it is known that if ¥ (¢) is minimum then 4; is the centroid of ¢{"~ 7, see [4] or
[5], therefore

®

From (8), (9) follows:

Vn—Z(S(n)) _ (ln-l

n
= (s
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or,
n-2

1 Vo (s®™) -l
—— == (10)

Von (s™)

n

Therefore from (7) and (10) we obtain

2 2n-2
D2zntV n(sMy n (5™,

The author is grateful to the referee for his helpful suggestions.

G. Tsintsifas, Thessaloniki, Greece
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A tournament result deduced from harems

There is a large class of difficult problems of the type: “does there exist a graph with
n vertices having prescribed degrees d,, ..., d,?” Restricting the problem to particu-
lar types of graphs can lead to some very neat characterisations. For example, it is a
straightforward exercise to show that a tree exists on n (= 2) vertices with degrees
dy,...,d,if and only if the dy, . . ., d, are positive integers with

di+...+d,=2(n-1).

We shall now restrict attention to ‘tournaments’. A tournament is a directed graph in
which each pair of distinct vertices is joined precisely once (in one direction or the
other). Alternatively it can be thought of as a competition of a set of players in which
each pair plays once resulting in a win for one of the players. Before proceeding, note
that, for example, there exists a tournament of 4 players in which their numbers of
wins are 1, 1,2 and 2 (e.g. A beats B, B beats D, C beats A, C beats B, D beats A and
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