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Ceva-Dreiecke

Ein einem Dreieck ABC einbeschriebenes Dreieck AXBXCX (Fig. 1) möge Ceva-
Dreieck heissen, wenn sich die drei Transversalen AAl9 BBl9 CCX in einem Punkt S
schneiden. Nach dem Satz von Ceva tritt dies genau dann ein, wenn die drei
Teilverhältnisse

[ABCX] - t < 0; [BCAX] - q < 0; [CABX] -a<0
der Gleichung genügen

Q' G' t 1

(i)

(2)

Figur 1. A

Im folgenden soll gezeigt werden:

Satz 1: Gegeben sei ein beliebiges Dreieck ABC und ein ebenfalls beliebiges Dreieck
AqBqCq (Fig. 1). Dann gibt es genau ein dem Dreieck ABC einbeschriebenes Ceva-
Dreieck AXBX C\, das dem Dreieck AqBqCq ähnlich ist.

Beweis: Zunächst weisen wir die Existenz eines solchen Dreiecks AXBXCX nach. Dazu
führen wir ein Koordinatensystem ein, das dem vorgegebenen Dreieck ABC nach

Figur 2 angepasst ist.
Aus der Figur können die Bezeichnungen für die Masszahlen der Winkel (im Bogen-
mass) sowie die Koordinaten der Punkte (in Abhängigkeit von den Teilverhältnissen
q9 &9 t) abgelesen werden. Dabei dürfen wir ohne Einschränkung der Allgemeinheit
voraussetzen, dass

i,c,i-ö6R+; aeR; 0LUßl9 y, eR+; *x + ßx + yx~n. (3)
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Die geforderte Bedingung der Ähnlichkeit von Dreieck AXBXCX zum «Formdreieck»
A0B0C0 besagt dann

«i ao; ß\ ßo; 71 70. (4)

ViTTff'TTa)

Figur 2. A(a I o)

c(0| c)

ViiT1!^

0,(^10) o B(b I 0)

Mit Hilfe der Skalarprodukte erhalten wir unter Berücksichtigung von (4) folgende
Beziehungen

Ctfx • C$x \CXAX\ • \CXBX\ • cosy0,

AXBX - AXCX \AXBX\ - \AXCX\ -cosa0,

(5)

(6)

die zusammen mit (2) ein System von drei Gleichungen für die drei Unbekannten

q9 a, x darstellen. Unser Problem ist also auf die Lösbarkeit des Systems (2), (5) und

(6) - und zwar mit Werten q, a, x e R+- zurückgeführt.
Zur genaueren Untersuchung dieser Frage formen wir zunächst (5) um, indem wir die
Koordinaten der Punkte einsetzen:

/ b a + xb\ I aa a + xb\ gc c

\ l+Q 1+T / \l + (7 1 + t/ 1+q l+a

Elimination von a mitteis (2) ergibt nach elementarer Umformung:

[(b2 + c2)-T2 + 2(ab + c2)-r + (a2+c2)]- Q2-(b-a)2

V[q- (a+xb)-(b-a)]2 + Q2- (l + r)2-c2

¦ ]/[Q(a+Tb) + (b-a)]2 + Q2(l + t)2-c2-cosy0.

(7)
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Verfährt man in analoger Weise mit Gleichung (6), so erhält man:

[-(b2 + c2)'X2 + (a2 + c2)]'Q2-2a(b-a)'Q + (b-a)2

]/{[a(l+Q)-b] + Qxb}2 + Q2'(x+l)2'C2 (8)

'Y{[a(l+Q)-b]-Qxb}2 + Q2'(x-l)2'C2'COS0L0.

Quadrieren von (7) und (8) würde zu zwei Folgegleichungen von der Form P (g, x) 0

und Q(g,x) 0 führen, wobei P(g,x), Q(g9x) im allgemeinen Polynome vom 8. Grad
in den Variablen g und x darstellen. Das System P (g9 x) 0 und Q (g, x) 0 hat zwar
nach dem Bezoutschen Theorem 8 • 8 64 Lösungen (g, x) im Körper der komplexen
Zahlen, unter denen sich auch - falls vorhanden - die Lösungen (g, x) eR+xR+ von
(7) und (8) befinden müssen, doch scheint eine Lösung des Problems auf diesem
algebraischen Weg ziemlich aussichtslos. Trotzdem werden uns die Gleichungen (7) und
(8) von Nutzen sein.

Im folgenden wird uns eine geometrisch-analytische Betrachtungsweise weiterführen.
Zunächst beweisen wir

Lemma 1: Sei Cx e ]AB[ beliebig gewählt. Dann gibt es stets genau ein dem Dreieck
ABC einbeschriebenes Ceva-Dreieck AXBXCX mit yi y0.

Sei S (Fig. 1) der Transversalenschnittpunkt auf ]CCi[. Man erkennt unmittelbar:
Läuft S auf ]CCj[ bei festem Cx von C nach Cx, so wächst yx monoton von 0 bis n
(Grenzen ausgenommen). Es gibt somit genau eine Lage von S auf ]CCX[ mit
zugehörigem Winkel yx y0.

Wir denken uns nun den Winkel yx (=yo) fest gegeben. Jedem Punkt Cxe]AB[ ist
dann nach Lemma 1 genau ein Punkt Ax e ]BC[ und ein Punkt Bx e ]AC[ so zugeordnet,

dass Dreieck AXBXCX ein Ceva-Dreieck mit yx — ya ist. Da die Punkte Cx, Ax, Bx

eindeutig durch die Teilverhältnisse x9g9ae R+ festgelegt sind, definiert Lemma 1

bei gegebenem y0 zwei Abbildungen:

g: R+9tk ö(t)gR+
(9)

a: R+3i R> öt(t)€R+.

Wegen der Ceva-Bedingung: g(x) • o(x) • t= 1 können wir uns vorerst auf die
Untersuchung der Funktion x *-? g(x) beschränken.
Von entscheidender Bedeutung für das folgende ist nun das Verhalten dieser Funktion
x ^ g{x) für t->0 bzw. für t-* + oo. Zunächst stellen wir fest: Für alle Paare

(x9g(x)) € R+x R+ muss Gleichung (7) erfüllt sein; anders ausgedrückt:

Lemma 2: Gleichung (7) hat fürjedes teR+ genau eine Lösung g=g(x) e R+.

Als Lösung von (7) ist g(x) eine algebraische Funktion von t, ist also an der Stelle

t 0 stetig. Es existiert somit lim g(x) — q(0) — q und wegen g(x) > 0 für reR+ ist
T-»o
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g 0. Wir zeigen, dass sogar g>0 gilt. Nun genügt g g(0) der Gleichung, die aus

(7) für r 0 hervorgeht:

(a2 + c2)-g2-(b-a)2 y[(a2 + c2)g2 + (b-a)2]2-4a2-(b-a)2g2'cosy0. (10)

Die Annahme g 0 führt auf den Widerspruch:

~-(b-a)2= (b-a)2- cosy0 => cosy0 -1l => 7o=7r-

Damit haben wir

Lemma 3: lim g(x) g(0) g e R+.
T->0

Bezeichnen wir denjenigen Punkt auf ]BC[9 der dem Teilverhältnis g>0 zugeordnet
ist, mit Äx, so erhalten wir

Lemma 4: Bei festem Winkel yx y0 strebt für x -? 0 (also Cx -» _4J der Punkt Ax des

Ceva-Dreiecks gegen einen (von y0 abhängigen) Grenzpunkt Äx e]BC[9 der dem
Teilverhältnis g g(0) e R+ (vgl. Lemma 3) entspricht. Kurz:

lim Ax=Äxe]BC[. (11)
C_->._

Aus Analogiegründen können wir die Eigenschaften der Abbildung (9) t*-> g(x) auf
die Abbildung xt->o(x) übertragen. Dem Grenzprozess Cx-+A(x->0) entspricht
dabei der Grenzprozess Cx -? B (x -? + oo). Wir erhalten so

Lemma 5: Bei festem Winkel yx y0 strebt für x -*• + oo fa/_?o Cj -» i?J öfer Pwrt/tf Bx

des Ceva-Dreiecks gegen einen (von yo abhängigen) Punkt Bx e]AC[, der einem
gewissen Teilverhältnis a.R+ entspricht. Kurz:

lim Bx Bxe]AC[. (12)
Ci-£

Wegen limg(x) ge R+, lim <t(t) äe R+ ergeben sich aus der Ceva-Bedingung
T->0 T-» + 00

g (x) - a (x) - x 1 die weiteren Grenzwerte: lim g (x) 0; lim er (t) + oo. Damit
« i • T-> + 00 T-*0haben wir

Lemma 6: Bei festem yx y0 strebt für x -* + oo (a/so Ci -» B) der Punkt Av des Ceva-

Dreiecks gegen B, für x-*0 (also Cx -» A) der Punkt Bx des Ceva-Dreiecks gegen A.

Kurz:

lim AX B; lim BX=A. (13)
C.-Ä Ci-*A

Figur3 möge diese Grenzfälle des Ceva-Dreiecks für Cx-+A bzw. CX-*B verdeutlichen.
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Figur 3. A c

Figur 4. A

Betrachten wir nun die Winkel a, und ßx des Ceva-Dreiecks, die an den Ecken Ax
bzw. Bx auftreten, in Abhängigkeit von r; dabei sei nach wie vor der Winkel yx bei Cx

festgehalten: yi yn. Aus Figur 3 ist unmittelbar ersichtlich, dass für t-*0 (also
Cx ~+A) der Winkel ai gegen 0 konvergiert, ebenso der Winkel ßx für t-> + oo (also
C, -? B). Also

lima, 0; lim £,=0; y\~yQ.
T-»0 T-» + 00

(14)

Wegen <X| + ßx + yx n und y\ y0 folgt daraus weiter

lim OL{=*n-y0'9 lim ßx n-y0.
T-» + 0O T-*0

(15)

Wir haben somit (bei festem yt y0) eine Abbildung, die jedem t e R+ zwei Winkel
ai (T)> Ai W zuordnet, die als Dreieckswinkel der Bedingung genügen:

0<a,(T),/_,(T)<n-}.. (16)
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Diese Abbildung ist aus geometrischen Gründen stetig; daher folgt aus (14) und (15)
nach dem Zwischenwertsatz, dass die beiden Funktionen

R+9th <x!(t) e]0,n-y0[; R+9t h> ß\(x) e]097t-y0[ (17)

surjektiv sind. Zu gegebenem Winkel a03]0,7r-y0[ gibt es also mindestens ein
T0eR+ mit der Eigenschaft a1(T0) a0, womit automatisch auch ß\(xQ) ßo erfüllt
ist. Damit ist der Existenznachweis eines Ceva-Dreiecks AXBXCX ~A0BqC0 erbracht.
Die Eindeuligkeit soll nun auf geometrischem Wege nachgewiesen werden. Dazu
beweisen wir folgenden Satz 2, aus dem die Eindeutigkeitsaussage von Satz 1 unmittelbar

hervorgeht.

Satz 2: Zwei demselben Dreieck ABC einbeschriebene zueinander ähnliche Ceva-

Dreiecke AXBXCX und A2B2C2 sind identisch.

Beweis: Haben die beiden Ceva-Dreiecke einen Eckpunkt gemeinsam, etwa CX C2,
so folgt unmittelbar aus Lemma 1, dass dann auch gilt: AX=A2 und BX B2. Wir
können also für das folgende annehmen: Ax +A29 Bx 4= B29 Cx + C2. Analog zu (1) sei

[ABCi] - t, < 0; [BCAi] - g, < 0 ;

(18)
[CABi] - ax < 0; gr at • t, 1 ; (i 1,2).

Wegen Ax+A2, gilt dann: gx + g2, ox + o2, xx 4= x2. Nun sind wegen gt• 07• t, 1,

(/ =1,2) die beiden Fälle gx < g29 ax < al9 xx < x2 bzw. gx >g2, ox> a2, xx > x2
ausgeschlossen. Bleiben also nur die Möglichkeiten, dass zweimal das <«»-Zeichen und
einmal das «>»-Zeichen steht oder umgekehrt. Durch Vertauschung der Indizes 1,2
und gegebenenfalls durch Umbenennung der Eckpunkte kann man ohne Einschränkung

der Allgemeinheit annehmen, dass gilt: xx<x2, gx<g2, ax> a2. Es gelten also

(Fig. 4) die Zwischenrelationen:

(ACXC2); (BAXA2); (CB2BX). (19)

Mehrmalige Anwendung des Axioms von Pasch auf geeignete Teildreiecke in Figur 4

liefert die Existenz der Schnittpunkte A*, B*, P mit den Anordnungsbeziehungen

(A*CXBX), (A*C2P), (CXPB*). (20)

Daraus folgt mittels des Satzes vom Aussenwinkel, angewandt auf die Dreiecke
CXPA* und C2PB*:

yx *BxCxPXCxPC2>< PC2B* y2. (21)

Die Annahme Ax *A2, Bx 4=_92, Cx + C2 führt also auf yx > y29 d.h. dass die beiden
Dreiecke AXBXCX und A2B2C2 nicht ähnlich sind, im Widerspruch zur Voraussetzung
von Satz 2. Dieser ist damit bewiesen.
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Aus Satz 1 ergibt sich durch Umdeutung folgender

Satz3: Gegeben seien zwei Dreiecke AXBXCX und AQB0Co. Dann gibt es genau ein zu
AqBqCq ähnliches Dreieck ABC, in dem AXBXCX Ceva-Dreieck ist.

Beweis: Man konstruiere zu A0B0Cq das nach Satz 1 existierende Ceva-Dreieck
A*B*C*, das zu AXBXCX ähnlich ist und führe dann durch eine Ähnlichkeitstransformation

A*B*C* in AXBX Cx über. Dabei geht AqB0C0 in ein zu ihm ähnliches Dreieck
ABC über. Die Eindeutigkeit folgt aus Satz 2.

Schliesslich merken wir noch eine weitere Folgerung aus Satz 1 an:

Satz 4: Das Gleichungssystem (7), (8) hat unter den Bedingungen (3) genau eine

Lösung (g9 x) e R+ x R+.

Dieser Satz 4 gibt uns ein Verfahren in die Hand, bei gegebenen Dreiecken ABC und
AqBqCq das zugehörige Ceva-Dreieck AXBXCX näherungsweise zu berechnen, indem
man das System (7), (8) - etwa nach dem zweidimensionalen Newton-Verfahren —

nach g und x auflöst. So erhält man z. B. für a 0, b c 1 (gleichschenklig
rechtwinkliges Dreieck) und a0 |; /?o f; ?o==f (Zeichendreieck) die Näherungswerte

t % 0,3234; g « 0,7340 und damit die Eckpunkte Ax (0,576710,4233); Cx (0,244410).

Zum Abschluß sei noch auf einen Zusammenhang des hier behandelten Problems mit
der Theorie der Sechseck-Gewebe hingewiesen [1*], auf den mich Herr Jeger
aufmerksam gemacht hat. Sei A die Menge der Punkte im Inneren des Dreiecks ABC.
Jeder Punkt SeA definiert genau ein dem Dreieck ABC einbeschriebenes Ceva-
Dreieck AXBXCX mit S als Transversalenschnittpunkt. Sind olX9 ßX9 yx die Winkel
dieses Dreiecks AXBX Cx (Fig. 2), so werden also jedem SeA drei Zahlen 0LX,ßl9yxe R+
mit txx +ßx + yx n zugeordnet. Betrachten wir nun in A die Kurven für S, längs denen
jeweils einer der drei Dreieckswinkel konstant ist (olq bzw. ß0 bzw. y0):

Ka: {SeA\oLX oL0]', 0<OL0<n

Kß: {SeA\ßx=ß0}', 0<ßQ<n (22)

Ky: {SeA\ yx= y0}; 0<y0<n.

Durch jeden Punkt SeA geht jeweils genau eine Kurve aus jeder der drei Scharen

(22). Satz 2 besagt, dass sich zwei Kurven verschiedener Scharen in höchstens einem
Punkt schneiden. (22) bildet daher ein sogenanntes Kurvengewebe. Sei nun in einer
(ocj | /?i)-Ebene das Gebiet

W~ {(0Lx\ßx) | 0Ll9ßX € R+aoc, + ßx < n} (23)

gegeben. Jedem SeA ist nach den obigen Überlegungen ein Tripel (ot\\ß\\yi) mit
0LX + ßx + yx 7t, also genau ein Punkt (ai | ß\) € W zugeordnet. Die Abbildung

F: A3S h> (0Lx\ßx)€ W (24)

ist nach Satz 1 bijektiv, es existiert also auch F"~x: W -+ A.
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Da F9F~X aus geometrischen Gründen stetig sind, ist F~x W^A eine topologische
Abbildung Die Kurven K^, Kß, Ky in A erweisen sich somit als topologische Bilder

folgender drei Parallelenscharen in W

0LX 0L0 AO < ßX< 71- OLq

ßX=ß0A0<0LX<7Z-ß0

olx + ßx 7t- y0AO <olx< 7i- y0

(25)

(»((3

Figur 5

vWl
¦b-*

*l+ßl ¥

Ä.J--V|Jb"3

Ein Kurvengewebe, dessen Scharen die topologischen Bilder von drei Parallelenscharen

sind, heisst ein Sechseck-Gewebe Das Verhalten der Kurven Ka, Kß, Ky in der
Nahe der Eckpunkte A, _9,Ckann aus Figur 4 erschlossen werden Die Figur 5 zeigt je
eine Kurve K^, Kß, Ky der drei Scharen des Sechseck-Gewebes m A sowie ihre
topologischen Urbilder (25) in W Man erhalt zu gegebenen Werten ol0, ß0, y0 den Punkt S
als Schnittpunkt der drei Kurven Ka, Kß, Ky und mit S auch das gesuchte Ceva-
Dreieck

Fur die Reinzeichnung der Figuren mochte ich Herrn P Schobi (ETH-Zunch) herzlich

danken
K Seebach

Universität München, Math Institut

ANMERKUNG

[1*] Vgl W Blaschke und G Bol Geometrie der Gewebe, Grundlehren der math Wissenschaften in Einzel¬

darstellungen, Bd XLIX, Berlin 1938
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