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Ceva-Dreiecke

Ein einem Dreieck ABC einbeschriebenes Dreieck 4,B;C; (Fig. 1) moge Ceva-
Dreieck heissen, wenn sich die drei Transversalen A4,, BB,, CC, in einem Punkt S
schneiden. Nach dem Satz von Ceva tritt dies genau dann ein, wenn die drei Teil-
verhiltnisse

[ABC|]=—1t<0; [BCA)]=—0<0; [CAB|]=-0<0 €))
der Gleichung geniigen

orog-t=1. 2

Figurl. a

Im folgenden soll gezeigt werden:

Satz 1: Gegeben sei ein beliebiges Dreieck ABC und ein ebenfalls beliebiges Dreieck
AoBoCy (Fig. 1). Dann gibt es genau ein dem Dreieck ABC einbeschriebenes Ceva-
Dreieck A\B,C,, das dem Dreieck AyByC, dhnlich ist.

Beweis: Zunidchst weisen wir die Existenz eines solchen Dreiecks 4,B,;C; nach. Dazu
fiilhren wir ein Koordinatensystem ein, das dem vorgegebenen Dreieck ABC nach
Figur 2 angepasst ist.

Aus der Figur konnen die Bezeichnungen fiir die Masszahlen der Winkel (im Bogen-
mass) sowie die Koordinaten der Punkte (in Abhédngigkeit von den Teilverhéltnissen
o, o, 7) abgelesen werden. Dabei diirfen wir ohne Einschrinkung der Allgemeinheit
voraussetzen, dass

b,c,b—aeR*; aeR; o,p,neRY;, o+p+y=n. 3

\
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Die geforderte Bedingung der Ahnlichkeit von Dreieck 4,B,C, zum «Formdreieck»
AQBO CO besagt dann

a=ap; Bi=Ph; n=n. “4)
y
c(ol c)
b
MG Iy
Figur2. A(al 0) cl(alifrb o) © B(b1 o) *

Mit Hilfe der Skalarprodukte erhalten wir unter Beriicksichtigung von (4) folgende
Beziehungen

—
C—TZI'ClBl=|C1A1|'|C131|°005?o, (5)
A,B,- 4,Cy=|4,B,|-|4,C| - cos tg, 6)

die zusammen mit (2) ein System von drei Gleichungen fiir die drei Unbekannten
o, o, t darstellen. Unser Problem ist also auf die Losbarkeit des Systems (2), (5) und
(6) — und zwar mit Werten g, g, t € R* — zuriickgefiihrt.

Zur genaueren Untersuchung dieser Frage formen wir zunéchst (5) um, indem wir die
Koordinaten der Punkte einsetzen:

( b a+1th oga a+1b oc c
H— . - + .
1+p 1+ l+o 1+1 1+ l1+o

V b a+1bh\? oc \? V ca a+1b\? ( c )2
= - + g a +{—] rcosy.
1+po l+1 1+ l+o 1+ l+0o

Elimination von ¢ mittels (2) ergibt nach elementarer Umformung:

[(b*+c?) -2+ 2(ab+c) 1+ (a*+cY)] - o®— (b—a)?
=Vle- (a+tb) - (b—a))*+@* (1+7)*- ¢ Q)
Vie- (a+tb)+ (b—a)]*+@*- (1+1)2- c2cos 3.
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Verfdhrt man in analoger Weise mit Gleichung (6), so erhilt man:
[- (B*+c?) -2+ (a2 +c?)]-0*—2a(b—a) - g+ (b—a)?
= V{la(1+ —b)+otb}2+@* (r+1)?- 2 ®)
Vila(1+0) —b]—otb}2+0* (1—1)2- c2- cos aq .

Quadrieren von (7) und (8) wiirde zu zwei Folgegleichungen von der Form P (p,7) =0
und Q (g, ) =0 fithren, wobei P (g, 1), Q (o, r) im allgemeinen Polynome vom 8. Grad
in den Variablen ¢ und t darstellen. Das System P (p,7) =0 und Q (g, 7) =0 hat zwar
nach dem Bezoutschen Theorem 8 -8 =64 Losungen (g, 7) im Korper der komplexen
Zahlen, unter denen sich auch — falls vorhanden — die Losungen (g, 7) e R*xR* von
(7) und (8) befinden miissen, doch scheint eine Losung des Problems auf diesem alge-
braischen Weg ziemlich aussichtslos. Trotzdem werden uns die Gleichungen (7) und
(8) von Nutzen sein. ‘

Im folgenden wird uns eine geometrisch-analytische Betrachtungsweise weiterfiithren.
Zunichst beweisen wir

Lemma 1: Sei C, € |AB|[ beliebig gewdihlt. Dann gibt es stets genau ein dem Dreieck
ABC einbeschriebenes Ceva-Dreieck A;B,C, mit y; = y,.

Sei S (Fig. 1) der Transversalenschnittpunkt auf JCC,[. Man erkennt unmittelbar:
Lauft S auf JCC,[ bei festem C; von C nach C;, so wichst », monoton von 0 bis =
(Grenzen ausgenommen). Es gibt somit genau eine Lage von S auf JCC,[ mit zuge-
horigem Winkel y, = y,.

Wir denken uns nun den Winkel y, (=%,) fest gegeben. Jedem Punkt C, € ]JAB] ist
dann nach Lemma 1 genau ein Punkt 4, € ] BC[ und ein Punkt B, € ]J4C[ so zugeord-
net, dass Dreieck 4,B,C, ein Ceva-Dreieck mit y, =y, ist. Da die Punkte C,, 4,, B,
eindeutig durch die Teilverhiltnisse 7, o, o € R* festgelegt sind, definiert Lemma 1
bei gegebenem y, zwei Abbildungen:

0: R*tart e g(r)eR*

)
. R*az e og(r)eR*.
Wegen der Ceva-Bedingung: ¢(7) - o(7) - =1 konnen wir uns vorerst auf die Unter-
suchung der Funktion 7 + @(7) beschrinken.
Von entscheidender Bedeutung fiir das folgende ist nun das Verhalten dieser Funktion
T 0(r) fir 1> 0 bzw. fiir 7 — + 0. Zundchst stellen wir fest: Fiir alle Paare
(1, 0(7)) € R*x R* muss Gleichung (7) erfiillt sein; anders ausgedriickt:

Lemma 2: Gleichung (7) hat fiir jedes t € R* genau eine Losung o= o(7) € R*.

Als Losung von (7) ist o(7) eine algebraische Funktion von 17, ist also an der Stelle
=0 stetig. Es existiert somit lin}’ e(7) =0(0) =9 und wegen g(7) > 0 fiir € R* ist
T '
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0=0. Wir zeigen, dass sogar ¢ >0 gilt. Nun geniigt g=(0) der Gleichung, die aus
(7) fiir t=0 hervorgeht:

(@®+c?) - 02— (b—a)?=V[(@*+c) o>+ (b—a)?]*—4a®- (b—a)? §* cos g . (10)
Die Annahme g =0 fiihrt auf den Widerspruch:

— (b;—a)2= (b—a)?-cosyy = cosypp==1 = yp=n.
Damit haben wir
Lemma 3: 1i_r2)g(r) =p(0)=peR".

Bezeichnen wir denjenigen Punkt auf ]BC[, der dem Teilverhéltnis ¢ > 0 zugeordnet
ist, mit 4,, so erhalten wir

Lemma 4: Bei festem Winkel y, = y, strebt fiir t — 0 (also C, = A) der Punkt A, des
Ceva-Dreiecks gegen einen (von y, abhdngigen) Grenzpunkt A, € |BC|, der dem Teil-
verhdltnis o = 0(0) € R* (vgl. Lemma 3) entspricht. Kurz:

lim A,=A4, € ]BC][. (11
Ci— A4

Aus Analogiegriinden konnen wir die Eigenschaften der Abbildung (9) t+ o(7) auf

die Abbildung 7+ o(7) ibertragen. Dem Grenzprozess C,— A4 (r — 0) entspricht
dabei der Grenzprozess C; — B (t = + o0). Wir erhalten so

Lemma 5: Bei festem Winkel y, = vy, strebt fiir t = + oo (also C, — B) der Punkt B,
des Ceva-Dreiecks gegen einen (von y, abhdngigen) Punkt B, € JAC|, der einem ge-
wissen Teilverhdltnis 6 € R* entspricht. Kurz:

lim B|=§| E]AC[ (12)
Cl—"B

Wegen limo(7) =g e R*, lim o(7) =& € R* ergeben sich aus der Ceva-Bedingung
=0 T— 4+
o(1):a(r)-t=1 die weiteren Grenzwerte: limo(7)=0; lin}) o (1) =+ co. Damit

haben wir ot

Lemma 6: Bei festem y, = y, strebt fiir t = + oo (also'C, = B) der Punkt A, des Ceva-
Dreiecks gegen B, fiir t — 0 (also C, = A) der Punkt B, des Ceva-Dreiecks gegen A.
Kurz:

lim 4, =B; lim B;=A. (13)
Cl—’B Cl"’A

Figur 3 mége diese Grenzfille des Ceva-Dreiecks fiir C; —+ 4 bzw. C) — B verdeut-
lichen.
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Figur4. A

Betrachten wir nun die Winkel a; und B, des Ceva-Dreiecks, die an den Ecken 4,
bzw. B, auftreten, in Abhdngigkeit von 7; dabei sei nach wie vor der Winkel y, bei C,
festgehalten: y;=19,. Aus Figur 3 ist unmittelbar ersichtlich, dass fiir 7 — 0 (also
C, = A) der Winkel a;, gegen 0 konvergiert, ebenso der Winkel g, fiir t — + oo (also
C,— B). Also

lima,=0; lim g,=0; Y1= %Yo - (14)

t—0 T=+®
Wegen a; + £, + 7 = nund y, = y, folgt daraus weiter

lim oy=n—9; limpB=n-1y. (15)
T+ t—0

Wir haben somit (bei festem y, = y,) eine Abbildung, die jedem € R* zwei Winkel
a; (7), By () zuordnet, die als Dreieckswinkel der Bedingung geniigen:

0<a (1), 8,(1) <= . (16)

\
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Diese Abbildung ist aus geometrischen Griinden stetig; daher folgt aus (14) und (15)
nach dem Zwischenwertsatz, dass die beiden Funktionen

R's1r e a())€]0,m—nl; R'sare Bi()e]0,n—yl (17

surjektiv sind. Zu gegebenem Winkel ag 3]0, m—y,[ gibt es also mindestens ein
7o € R* mit der Eigenschaft a, (zy) = #y, womit automatisch auch g, (7o) = f, erfiillt
ist. Damit ist der Existenznachweis eines Ceva-Dreiecks 4, B;C ~ 4yB,C, erbracht.

Die Eindeutigkeit soll nun auf geometrischem Wege nachgewiesen werden. Dazu be-

weisen wir folgenden Satz 2, aus dem die Eindeutigkeitsaussage von Satz 1 unmittel-
bar hervorgeht.

Satz2: Zwei demselben Dreieck ABC einbeschriebene zueinander dhnliche Ceva-
Dreiecke A\B,C, und A,B,C; sind identisch.

Beweis: Haben die beiden Ceva-Dreiecke einen Eckpunkt gemeinsam, etwa C,=C,,
so folgt unmittelbar aus Lemma 1, dass dann auch gilt: 4,=4, und B,=B,. Wir
konnen also fiir das folgende annehmen: 4, # 4,, B, * B,, C, *+ C,. Analog zu (1) sei

[ABC]=-1<0; [BCA4]=-¢<0;

(18)
[CAB]=—-0,<0; gir0;-u=1; (i=1,2).

Wegen A, *A4,, ... gilt dann: ¢, * @,, 0, * 0,3, T) ¥ 7,. Nun sind wegen ;- ;" 7,=1,
(i=1,2) die beiden Fille g; < 0, 01 < 03, 7)< 15 bzw. 0| > 0, 61 > 65, T; > 75 ausge-
schlossen. Bleiben also nur die Mdoglichkeiten, dass zweimal das «<»-Zeichen und
einmal das «>»-Zeichen steht oder umgekehrt. Durch Vertauschung der Indizes 1, 2
und gegebenenfalls durch Umbenennung der Eckpunkte kann man ohne Einschrin-
kung der Allgemeinheit annehmen, dass gilt: 7, < 75, 0 < 03, 01 > ;. Es gelten also
(Fig. 4) die Zwischenrelationen:

(AC\Cy); (BAAy); <{CB,B). (19)

Mehrmalige Anwendung des Axioms von Pasch auf geeignete Teildreiecke in Figur 4
liefert die Existenz der Schnittpunkte 4*, B*, P mit den Anordnungsbeziehungen

(A*C,B)>, {(A*C,P>, (C,PB*). (20)

Daraus folgt mittels des Satzes vom Aussenwinkel, angewandt auf die Dreiecke
CPA* und C,PB*:

)’]={31C1P>{C1PC2>{PC23*=‘Y2. (21)
Die Annahme A4, + A4,, B, * B,, C, * C, fiihrt also auf y, > y;, d.h. dass die beiden

Dreiecke 4,B,C, und A4,B,C, nicht dhnlich sind, im Widerspruch zur Voraussetzung
von Satz 2. Dieser ist damit bewiesen.
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Aus Satz 1 ergibt sich durch Umdeutung folgender

Satz 3: Gegeben seien zwei Dreiecke A\B,C, und AyByC,. Dann gibt es genau ein zu
AyByCy dhnliches Dreieck ABC, in dem A,B,C, Ceva-Dreieck ist.

Beweis: Man konstruiere zu AyByC, das nach Satz1 existierende Ceva-Dreieck
A?B}C?%, das zu A4, B, C, dhnlich ist und fiihre dann durch eine Ahnlichkeitstransfor-
mation AT B¥CY¥ in 4, B, C, iiber. Dabei geht 4yB,C, in ein zu ihm dhnliches Dreieck
ABC iiber. Die Eindeutigkeit folgt aus Satz 2.

Schliesslich merken wir noch eine weitere Folgerung aus Satz 1 an:

Satz4: Das Gleichungssystem (7), (8) hat unter den Bedingungen (3) genau eine
Lésung (o, 7) € R* xR,

Dieser Satz 4 gibt uns ein Verfahren in die Hand, bei gegebenen Dreiecken 4BC und
AyByC, das zugehorige Ceva-Dreieck 4;B,C, ndherungsweise zu berechnen, indem
man das System (7), (8) — etwa nach dem zweidimensionalen Newton-Verfahren —
nach ¢ und 7 auflost. So erhdlt man z.B. fiir a=0, b=c=1 (gleichschenklig recht-
winkliges Dreieck) und og=%; fy=13; y =73 (Zeichendreieck) die Niherungswerte
12 0,3234; 0~ 0,7340 und damit die Eckpunkte 4, (0,5767|0,4233); C, (0,2444 | 0).

Zum AbschluB sei noch auf einen Zusammenhang des hier behandelten Problems mit
der Theorie der Sechseck-Gewebe hingewiesen [1*], auf den mich Herr Jeger auf-
merksam gemacht hat. Sei 4 die Menge der Punkte im Inneren des Dreiecks ABC.
Jeder Punkt S € 4 definiert genau ein dem Dreieck ABC einbeschriebenes Ceva-
Dreieck 4, B;C, mit S als Transversalenschnittpunkt. Sind «;, ), y; die Winkel
dieses Dreiecks 4,B,C,; (Fig. 2), so werden also jedem S € 4 drei Zahlen a,, 8, y; € R*
mit o; + f; + y, = n zugeordnet. Betrachten wir nun in 4 die Kurven fiir S, langs denen
jeweils einer der drei Dreieckswinkel konstant ist (og bzw. o bzw. y,):

K, {Sed|loy=0y; O<oap<n
Ks: (Sed|pi=B}; O0<fo<n (22)
K,: {Sed|n=n}; O0<p<n.
Durch jeden Punkt S € 4 geht jeweils genau eine Kurve aus jeder der drei Scharen
(22). Satz 2 besagt, dass sich zwei Kurven verschiedener Scharen in hochstens einem

Punkt schneiden. (22) bildet daher ein sogenanntes Kurvengewebe. Sei nun in einer
(2] B1)-Ebene das Gebiet

W={(|B) |, e R* Aoty + B < m} (23)

gegeben. Jedem S € 4 ist nach den obigen Uberlegungen ein Tripel («;|£;|7;) mit
ay + B, + 7, = 7, also genau ein Punkt (o, | f;) € W zugeordnet. Die Abbildung

F: 438 (y|p)ew (24)

ist nach Satz 1 bijektiv, es existiert also auch F~': W — 4.
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Da F,F~! aus geometrischen Griinden stetig sind, ist F~!: W — 4 eine topologische
Abbildung. Die Kurven K,, Kz, K, in 4 erweisen sich somit als topologische Bil-
der folgender drei Parallelenscharen in W:

o =0g A0 < i <m—0
Br=BN0<oy<m—fo (25)

d1+ﬂ1=ﬂ—'}’0/\0<a1<7l—‘}'0.

®
n
Vil

Figur 5.

Ein Kurvengewebe, dessen Scharen die topologischen Bilder von drei Parallelenscha-
ren sind, heisst ein Sechseck-Gewebe. Das Verhalten der Kurven K,, Kz, K, in der
Nihe der Eckpunkte 4, B, C kann aus Figur4 erschlossen werden. Die Figur 5 zeigt je
eine Kurve K, K4, K, der drei Scharen des Sechseck-Gewebes in 4 sowie ihre topo-
logischen Urbilder (25) in W. Man erhalt zu gegebenen Werten oy, 8y, 7o den Punkt S
als Schnittpunkt der drei Kurven K,, K4, K, und mit S auch das gesuchte Ceva-
Dreieck.

Fiir die Reinzeichnung der Figuren mochte ich Herrn P. Schébi (ETH-Ziirich) herz-
lich danken.

K. Seebach
Universitit Miinchen, Math. Institut .

ANMERKUNG

[1*] Vgl. W. Blaschke und G. Bol: Geometrie der Gewebe; Grundlehren der math. Wissenschaften in Einzel-
darstellungen, Bd. XLIX; Berlin 1938.
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