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Some inequalities for the triangle

Notation. a,b,c - sides BC, CA, AB of a triangle ABC, a,ß,y- its angles, s - semi-
penmeter, F - area, R — radius of circumcircle, r — radius of incircle, ha, hb, hc -
altitudes, ma, mb, mc - medians and ra, rb, rc - radn of excircles

Theorem 1. In every triangle thefollowing equahties are vahd

hb+hc hc + ha ha + hb
+ + 6 (1)

ra rb rc

- ol ß-y ß y-oi - y ol-ß 3s
cosJ — cos —-— + cosJ — cos —-— + cosJ —- cos —-— — (2)

2 2 2 2 2 2 4R w

Proof. Since

ha hb — hc — andabcF F F
s — a s—b s — c

we have

hb+hc hc+ha ha + hb

ra rb rc

2

abc

2

abc

(a(s-a)(b+c) + b(s-b)(c + a) + c(s-c)(a + b))

(a3 + b3 + c3-2s(a2 + b2 + c2) + 2s(ab + bc + ca)).
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From abc 4Rrs, ab + bc + ca r2 + s2 + 4Rr, a2 + b2 + c2 2(s2-4Rr-r2) and
a3 + b3 + c3 2s(s2-6Rr-3r2), we get

hb + hc hc+ha ha + hb

ra rb

1

2Rrs
(2s(r2 + s2 + 4Rr)-2s-2(s2-4Rr-r2) + 2s(s2-6Rr-3r2)) 6,

i.e. (1) holds.

Moreover, since

hb + hc 8R sin — cos2 — cos —¦—, hc + ha SR sin — cos2 -— cos22 2 22 2

y y ol — ß
ha + hb %R sin — cos2 — cos —-— and

ol ß y
ra s • tan —, rb s - tan —, rc s • tan —,

we obtain

hb + hc hc + ha ha + hb

ra rb rc

SRI ol ß-y - ß y-a y ol-ß
cosJ —- cos ——h cosJ — cos ——v cosJ — cos

2 2 2 2 2 2

which is equivalent to

a ß-y ß y-OL y ol-ß 3 s
cosJ —- cos ----- 4- cosJ — cos —-—h cosJ — cos —-—22 22 2 2 4 R

i.e., (2).

Corollary 1. In every triangle

3.2n^^)V(-k±_^)" + (--±^)^6% „*,. (A)

Equality in (A) holds ifand only ifthe triangle is equilateral and n=l.
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Proof. The inequality (A) follows from (1) putting xx= -, x2 —-—- and
h + /**. r° rb

.V3 __±_*in([7]>47)

3 S y)" -: I xl £ | E *,)" (» _. 1, „, > 0).

Remark 1. a) The left part of (A) holds for n <, 0. b) If 0 < n < 1, then the inequality
(A) is reversed.

Remark 2. For n - 1, we have the inequality 6.26 in [3]:

ra rb
^

rc _
3

/*£ + /*<. /fc + /ifl /*<, + /**> 2
'

Corollary 2. The following inequality

a 0-y £ y-a y a-£ 9]/3
cosJ — cos —— + cosJ — cos h cos5 — cos ___ ——

2 2 2 2 2 2 8

holds, with inequality only for ol ß=y.

Proof. This follows from (2) and 2 s a + b + c <_; 3 R Y3 ([3], 5.3).

Theorem 2. In every triangle

awrf //re equality is true ifan only ifthe triangle is equilateral.

Proof. Since ([5], 156)

ma ^ Ys(s~~a) » m*> ^ V^(^~&) wc _> y_:(_:-c)

we have

1GM?M#: ^n/2

Let us consider the function

f(x) (s-x)3n/2, (0 < x < s9 n £ 2/3)

((s-a)3n/2+(.y-Z?)3n/2 + (5-c)3w/2).
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and its second derivative

3n i*.-2
f"(x)= — (3n-2)(s-x)2 >0.

Hence, the function / is convex, so that

3 / 33 / 3 \3«/2 9
X(_-*,)3"/2_t3'-3"'2 3_-2>, «_:4-
/=! \ ,=1 / 5

m-

(4)

Putting xx a, x2 b and x3 c in (4), we get

(s- a)3n/2 + (s-b)3n/2 + (s-c)3n/2 _> 3,-3n/2 • s3n/2. (5)

Now (5) and (3) imply that

From (6) and s2 > 21 r2 ([3], 5.11), we obtain:

m^ + M+\^-\*3.
ra I \ rb

Theorem 3. In every triangle

a3 b3 c3 2R]/3
4Y3(3R-4r)< + + <_ y—(3R-4r). (C)

fbfc rcra rarb r

Equality occurs ifand only ifthe triangle is equilateral.

Proof. We have

a3 b3 c3
¦ + + -

fbfc rcra rarb

—y (a3 (s-b) (s-c) + b3 (s-c) (s-a) + c3 (s-a) (s-b))Fl

— (s(a4 + b4 + c4)-s2(a3 + b3 + c3) + abc(a2 + b2 + c2)).

From F=rs, abc 4Rrs, a2 + b2 + c2 2 • (s2-4R r- r2), a3 + b3 + c3

2s(s2-6Rr-3r2) and a4 + b4 + c4 2 (s2-4R r- r2)2 - 2 (2rs)2, we obtain

n* h3 r3 1^_ + „E— + -±^ ±(4Rr2 + 2Rs2-3rs2 + r3)
rbh rcra rarb rs

— (rr(4R + r)+ss(2R-3r)). (7)
F
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Then, since ([3], 7.2, 5.11)

r(4R + r)>FY3

and

s2>21r2,

(7) implies

a3 b3 c3 2
+ + > — (rFY3+s3rY3(2R-3r)) 4Y3(3R-4r)9

rbft rcra rarb F

i.e. the first part ofthe inequahty (C).
By 5 3 and 5.6 in [3] and (7) we get the second part of (C)

Theorem 4. In every triangle

4^3 lR-2r a b c l/Tä~
3

"

9R-2r ^
hb + hc* hc + ha* ha+hb^ ¥ 2r * (D)

Equality holds ifand only ifthe triangle is equilateral

Proof. Since

2F 2F 2F
ha hb -—, hcabcwe have

a b c abcl 1 1 1 \

hb + hc hc+ha ha + hb~~ 2F\b+ c c + a a + b)

abc (a2 + b2 + c2 + 3(ab + bc + ca))
2F ((a + b + c)(ab + bc + ca)-abc)

From abc 4Rrs9 F=rs9 a + b + c 2s9 ab + bc + ca r2 + s2 + 4Rr and a2 + b2 + c2

2 (s2-4 Rr-r2)9we get

ab c R 5s2 + 4Rr + r2
' + ". T- + -

hb+hc hc+ha ha+hb s s2 + 2Rr + r2

Rl 2r(3R + 2r)\
~

s \ s2 + 2Rr + r2}'
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Using ([3], 5.8, 5.3)

s2> r (l6R-5r)

and

2s a + b + c<3R vs.

we obtain

a b
- + - +

c

127

hb+hc hc+ha ha + hb SV 9R -2rj
R i6(7/?--2r)
s 9R- 2r

4]/3 1R--2r
3 9R-2r"

i.e. the left part ofthe inequality (D).
From the inequalities

hb + hc>2Yhhc, hc + ha>2YhJtq, ha + hb>2YhaTb,

it follows that

a b c
_

I

b+hc hc+ha ha + hb \
1 1 1

ha (hb+hc) hb (hc + ha) hc (ha + hb)

1 1 1

¦ + —F=r + -

YhaMhcKWa Yh Yk

If in the well-known inequality

(x+y + z)2<t3(x2 + y2 + z2) 9 (x,y,z>0),
1 1 l

weput x —7=^, y —j=r and z —j=r9 we obtain
]fhq yhb ]/hc

1

t

1

t

1 \2 / 1

{

1

^

1

YK* Wh* YKl * \ha + h* h<

1111 2F2
From t +t + T^— > hahbhc —-9 (8) and (10), we get

ha hb hc r R

(8)

(9)

(10)

abc¦ + -. — + - _-_£-
hb + hc hc + ha ha + hb ]/hahbht

This proves the right part of (D).

n-n-
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Remark 4. From (D) using the inequality 5.1 in [3] we have the inequality

l/l a 6 C R nz
V

hb + hc hc + ha ha + hb 2r ' '

shown in [4].

TheoremS. In every triangle

^+___+__UA *
(E)

bc ca ab 4 2r

with equality holding ifand only ifthe triangle is equilateral.

Proof. Using Bager's identity ([2], 39)

am2 + bmi + cm2 — (s2 + 2Rr + 5r2),

weget

m2 ml m2 ]_ 2 2— + + —- ——(ama + bml + cmlc)
bc ca ab abc

S
(s2 + 2Rr+5r2).

2abc

Then, since ([3], 5.8,5.1)

s2^4R2 + 4Rr + 3r2

and

2r<_/R,

we have

ml ml m2 1

—£ + _-_£.+—L^
bc ca ab %Rr

(4R2 + 6Rr + Sr2)

M<<.—^— [4R2 + 6Rr + Sr —
8Rr \ 2

»-1 JL"~
4

+
2r *

i.e. (E) holds.
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Theorem 6. For acute triangle the following inequality holds

4 r s
a2 tan OL + b2tanß + c2 tany _> ——~2 j* • (F)

Proof. If in Jensen's inequality for a convex function

'zAJAt)
/ | "V— I ^"L~L1—1~iL' Pi *nd —el,

Yj**! YjXt
; l / t=*\

we put

xx=a, x2 b, x3 c, px=a2, p2 b2 and p3 c2,

then, for f(x) 1/x, from ([1], 43; [3] 5.14)

a2 + b2 + c2 4F(cotOL + cotyff + coty)

and

a2 + b2 + c2<%R2 + 4r2,

we obtain (F).

Remark 5. This method shown in [6].

Theorem 7. In every triangle

Equality holds ifand only ifthe triangle is equilateral.

Proof. By means ofthe arithmetic-geometric inequality, we get

Yha+Yh+Yh~c^iy^' 2F
b

IF
c

^s2

Then, since ([3], 5.12)

2s2^21Rr,

(11)
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(11) implies

Yh~+Yhb+Yhc~>3Y3r~,

i.e. the left part ofthe inequality (G).

If in the inequality (9) we put x —p, >> —=- and z —p, then, from ([3], 5.17)
ya yb yc

ab + bc + ca^4(R + r)2,

we obtain

Yk+Yh+Wc^ ißF7]/! (7
1 1

+T+7

V- 3

^(ab + bc + ca)

i.e. the right part of (G).

Remark 6. The second part of the inequality (G) is more precise than

Yhq+Yhb+Y^^jY^^

shown in [3].

Theorem 8. In every triangle thefollowing inequality is valid:

rbrc rcra rarb 9-tr+ir+i^y (H)

Equality holds ifand only ifthe triangle is equilateral.

Proof 1. Inequality (H) is equivalent to

s—a s — b s — c 9

al bl cl 4 s

The function

/(x) 4~- (0<x<s)
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f lZ/W ^3 /

El Math, Vol 42, 1987 131

is convex, so that

3 x,el

If we put xx a, x2 b and x3 c, we get the inequahty (H)

Proof 2. As

fb^c rcra rarb
a2 b2 c2

_s(s-a) s(s-b) s(s-c)
a2

+
b2

+
c2

$ • "» T TT 1 i lv $
2(b2c2 + c2a2 + a2b2)-—^(ab + bc + ca)abc

1

(b2c2 + c2a2 + a2b2-4Rr(ab + bc + ca)) (13)l6R2r2

From ([3], 5 17)

ab + bc + ca >4r(5R-r),
(bc + ab + ca)2<L3(b2c2 + c2a2 + a2b2)

and (13), we have

Wc _,_ rc^ ^ rarb ab + bc + ca
—z- + —z- + —y-_> _o - ,— (ab + bc + ca-l2Rr)a2 b2 c2 48äV v '

(5R-r)(2R-r)
3R2

By (14) and the inequahty 5 1 in [3], we obtain (H)

D M Milo§evi6, Pranjam, YU
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Ceva-Dreiecke

Ein einem Dreieck ABC einbeschriebenes Dreieck AXBXCX (Fig. 1) möge Ceva-
Dreieck heissen, wenn sich die drei Transversalen AAl9 BBl9 CCX in einem Punkt S
schneiden. Nach dem Satz von Ceva tritt dies genau dann ein, wenn die drei
Teilverhältnisse

[ABCX] - t < 0; [BCAX] - q < 0; [CABX] -a<0
der Gleichung genügen

Q' G' t 1

(i)

(2)

Figur 1. A

Im folgenden soll gezeigt werden:

Satz 1: Gegeben sei ein beliebiges Dreieck ABC und ein ebenfalls beliebiges Dreieck
AqBqCq (Fig. 1). Dann gibt es genau ein dem Dreieck ABC einbeschriebenes Ceva-
Dreieck AXBX C\, das dem Dreieck AqBqCq ähnlich ist.

Beweis: Zunächst weisen wir die Existenz eines solchen Dreiecks AXBXCX nach. Dazu
führen wir ein Koordinatensystem ein, das dem vorgegebenen Dreieck ABC nach

Figur 2 angepasst ist.
Aus der Figur können die Bezeichnungen für die Masszahlen der Winkel (im Bogen-
mass) sowie die Koordinaten der Punkte (in Abhängigkeit von den Teilverhältnissen
q9 &9 t) abgelesen werden. Dabei dürfen wir ohne Einschränkung der Allgemeinheit
voraussetzen, dass

i,c,i-ö6R+; aeR; 0LUßl9 y, eR+; *x + ßx + yx~n. (3)
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