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Some inequalities for the triangle

Notation. g, b, c — sides BC, CA, AB of a triangle ABC; a, §, y — its angles; s — semi-
perimeter; F — area; R — radius of circumcircle; » — radius of incircle; A,, hy, h, —
altitudes; m,, m,, m. — medians and r,, rp, r. — radii of excircles.

Theorem 1. In every triangle the following equalities are valid:

hy+h, " h.+h, 4 h,+ hy _

6 (1)
rq rp Fe
3_‘_1_ ﬂ—y 3_ﬂ_ y—a + 3_):_ (1“ﬂ=_3_~_5'_ 2
cos > cos 5 + cos ) cos 5 cos 5 cos > iR’ 2)
Proof. Since
2F 2F 2F
ha=-——, hb:T, hc=—;- and
F F F
T — = r =-—-——-——’
fa= 2 LA T
we have

hb+h(‘ hc+ha ha+ hb
+ +
rq rp re

(@a(s—a)(b+c)+b(s=b)(c+a)+c(s—c)(a+ b))

abe

(@+b+c-2s(@+b*+c)+2s(ab+bc+ca)).

- abc

\
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From abc=4Rrs, ab+bc+ca=r*+s>+4Rr, a*+b*+c2=2(s’-4Rr—r?) and
aA+b3+c3=2s5(s>—6Rr—3r?), we get

hy+h. h.+h, h,+h,
+ +

Fy rp re

1
= Q2s(r’+s*+4Rr)—2s5-2(s>—4Rr—r})+25(s>—6Rr—3r%)) =6,

i.e. (1) holds.
Moreover, since

hb+hc=8Rsin%cosz%cos?, hc+ha=8Rsin§coszgcosZ:2ﬁ,
h,+h,=8R sin—;-cosz%cos a; and
ra=s-tan—02(—, rb=s-tan—§—, rc=s-tan—;—,
we obtain
hy+h, + h.+h, " h,+ hy
Fa I'p Fe
8 R - - -
=——;—(cos3-g~cosé—2—l)+cos3-2ﬁlcosz—i—oi+cos3%cos azb’ ,
which is equivalent to
- - —5 3
cos3—02—(-cosﬁ—z-—z+cos3icosy—2—g+cos3—§—cos a2 A =Z'%,
ie., (2).
Corollary 1. In every triangle
\n n n
3-2"s(hb+h‘) +(ﬁc—t£“—) +(h"+h”) <6", n=1. (A)
Fq ry re

Equality in (A) holds if and only if the triangle is equilateral and n = 1.
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hy+h, h.+h,

Proof. The inequality (A) follows from (1) putting x; =

¢

3o\ 3 3 n
3(2?’) s}:x?s(z x,-) , (n=1, x;>0).
i i=1 i=1

Remark 1. a) The left part of (A) holds for n<0. b) If 0 < n < 1, then the inequality
(A) is reversed.

Remark 2. For n=—1, we have the inequality 6.26 in [3]:

ra rp re 3

+ + =
hy+h, h.+h, h,+h 2

Corollary 2. The following inequality

B— Y y a—pf 9Y)3
3 & 3 3
cos 5 cos 3 +cos 5 —Co s 5 +cos 5 cos ) < 2

holds, with inequality only for o= f=y.

Proof. This follows from (2) and 2s=a+b+c<3R}3 ([3], 5.3).

Theorem 2. In every triangle

(ma) +(mb) +(mc) 231_3n/2.(i) >3, n=2/3, (B)
Iy ry re r

and the equality is true if an only if the triangle is equilateral.

Proof. Since ([5], 156)

m,2Ys(s—a), mpy=2Ys(s—b), m.2Ys(s—oc),

we have

( ma)"+ ( mb)" + ( mc)" > rn:-"/z ((s—a@)*"2 + (s— b)3"2 4 (s— ¢)3"?) .

ra rp Te
Let us consider the function

fx)=@6-x3"%, (O<x<s, nx2/3)

iy
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and its second derivative
3n

77 () =3f-(3n—z) -x)2 ’20.

Hence, the function f is convex, so that
3 3 3n/2 2
Y (s—x)*2 > 3'“3"’2(33— > x,—) , n= 4
i=1 i=1

Putting x|, =a, x,=b and x3=c in (4), we get
(S__a)Sn/Z + (S—“ b)3n/2 + (s___c)3n/2 > 31—3n/2 . S3n/2 ) (5)

Now (5) and (3) imply that

('") +('"") +(m) 231—3"/2(5) RS (6)
ra rp r. r 3

From (6) and s2 > 27r2 ([3], 5.11), we obtain:

n n n
() () (7)==
Fa rp Ve

Theorem 3. In every triangle

3 3 3 2
4)3(3R-4r) < —+ AL Rrvj (GR—4r). (©€)

Fpte Fela Falp
Equality occurs if and only if the triangle is equilateral.

Proof. We have

a’ b3 c3
+—
Fpre Fetg Farp

=—P1:§-(a3 (s—b)(s—c)+b3(s—c)(s—a)+ 3 (s—a) (s—b))

- _i:lT(S(a“+b4+c“) —s¥(@+b*+c%) +abc(a’+ b2+ ).

From F=rs, abc=4Rrs, a*+b*+c*=2-(s*—4Rr-r?), d+b+c3=
25(s2—=6Rr—13r%) and a*+b*+c*=2(s>—4Rr—r?)2-2(2rs)% we obtain
a’ b} c3
+

2
+ =—(4Rr*+2Rs2-3rs?+r’
Fpte Fely Falp rs

=—21-:—(r-r(4R+r)+S°s(2R—3r)). (M
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Then, since ([3], 7.2, 5.11)

r(4R+r) = F)3
and

§2>27r2,
(7) implies

a’ b3
+—+

3
2
Tt 2= FY3+s-3r)3QR-3n)=4)33R—-4r),

c

i.e. the first part of the inequality (C).
By 5.3 and 5.6 in [3] and (7) we get the second part of (C).

Theorem 4. In every triangle

43 TR-2r a b

+ + c 3R
3 9R-2r hy+h. h.+h,

< .
ha+hb 2r

Equality holds if and only if the triangle is equilateral.

Proof. Since

F 2F F
ha=—g_s hbz—_y hc=’%_—9
a b c
we have
a+b+c_abc(l+1+l)
hy+h, h.+h, h,+hy 2F \b+c c+a a+b

_abe. (@a*+b*+c2+3(ab+bc+ca)

T 2F ((a+b+c) (ab+bc+ca)y—abc)

From abc=4Rrs, F=rs, a+b+c=2s,ab+bc+ca=r*+s*+4Rr and a’+b*+¢
=2(s2—4Rr-r?, we get

a_ . b L _£.5s2+4Rr+r2
ho+h, h.+h, h,+hy, s S2+2Rr+r?

_R(,_2rGR+21)
s s2+2Rr+r%|’

.42, 1987

(D)
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Using ([3], 5.8, 5.3)

s?>r(16R—57)
and

2s=a+b+c<3R}3,

we obtain

a b c R 3R+2r
+ 2 5— —

hy+h, h.+h, h at Ny O9R-2r

_ R _6(1R-21)

s 9R-2r

4V TR-2r

3 9R-2r"’

i.e. the left part of the inequality (D).
From the inequalities

ho+h.=2Vhyh,, he+h,=2Vh hg, hot+hy=2Vh,hy,

it follows that

a b —ZF( I DR )
hothe  hethy  hethy ha(ho+he) — hy(hethy) — ho(hothy)

F ( 1 1 ) ®)
= Vhahoh \ Vi, * Vhs * Vhe
If in the well-known inequality
(x+y+2)2<3(x*+y*+zY), (x,3,2z>0), 9)
we put r———l——— y= L and z= L we obtain
1 1 1 \? 1 1 1
+ <3 +—+ 10
(m Vi Vh‘) Taeen] o
1 1 1 1 2F?
—t—t—=— =—, ) t
From I + hb + P hg hp h, R (8) and (10), we ge
a_ . b 4 3 _V
hy+h. h.+h, ha+hb h hb

This proves the right part of (D).
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Remark 4. From (D) using the inequality 5.1 in [3] we have the inequality

Vjs a + b + c SR
hy+h, h.+h, h,+hy  2r

13,
shown in [4].

Theorem 5. In every triangle

m: mj m:2 S R
“ +—<—+—, E
be ca ab 4 2r (E)

with equality holding if and only if the triangle is equilateral.

Proof. Using Bager’s identity ([2], 39)
amg+bmi + Cm%=-§-(s2+2R r+5r%,

we get

m: mj m? 1

be ca+ab=ab

- (am2+bmi+cm?)

s
2abce

(s2+2Rr+5r%).
Then, since ([3], 5.8, 5.1)

s2<4R*+4Rr+3r?
and

2r<R,

we have

2 2
m: mi m? 1

+ 4R?2+6Rr+812
bc ca abS 8Rr( r+8r)

| R
— 2 —
< 3 r(4R +6Rr+8r 2)

SR
4 2r°

i.e. (E) holds.
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Theorem 6. For acute triangle the following inequality holds

4rs’

2 2 2
a‘tano + b*tanf + c*tany = .
B Y 2R24 2

Proof. If in Jensen’s inequality for a convex function

3 3 .
Pi Z Xi (&)
=1 i=1

A i= Xj Di
1= <

, prand —el,

3 .
Z Xi i

i=1 i=1

™

we put
Xxi=a, x;=b, x3=c, p=a*, p,=b
then, for f(x) = 1/x, from ([1], 43; [3] 5.14)
a’+ b?+ c>=4F (cota + cot § + coty)
and
a*+b*+c*<8R2+4r%,
we obtain (F).

Remark 5. This method shown in [6].

Theorem 7. In every triangle

3V3r<Vh,+ VH+WZS(1+—£—)VE§.

Equality holds if and only if the triangle is equilateral.

-

and py=c

Proof. By means of the arithmetic-geometric inequality, we get

6
F
Vz;+wr,,+vz:23]/25-zf-zc
__36 21252
eSS

Then, since ([3], 5.12)

25s2>27Rr,

2

b2

129

(F)

G)

(11)
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(11) implies

Vha+ Vhy+ Vh = 3V37,

i.e. the left part of the inequality (G).
1 1 1

If in the inequality (9) we put x=7——, y=—=and z=—=, then, from ([3], 5.17)
a’ " Vb e

ab+bc+ca<4(R+r)?,

we obtain

Vha+ Vi + Vh, < VEF-_V3 (%+%+—!€—)

V— (ab+bc+ca)
< (1 +“1r€) V6R.
i.e. the right part of (G).

Remark 6. The second part of the inequality (G) is more precise than

VZ:+]/ITI,+]/IZS-;—V6R,

shown in [3].
Theorem 8. In every triangle the following inequality is valid:

ryre rerg Falp
o2 b? c?

9

Equality holds if and only if the triangle is equilateral.

Proof 1. Inequality (H) is equivalent to

s—a s—-b s—c 9
+ + >—, 12
a? b? c? 45 (12)

The function

1
f(x)=f§——; O<x<y)
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1s convex, so that

3
> X

3
X fx)z3f =], el

If we put x| =a, x,=b and x;=c, we get the inequality (H).
Proof 2. As

ryr r.r rarlp
2C + c2a + a2
a b c

_ s(s—a) 4 s(s—b) N s(s—c)

> b? c?
(Rt a+ab) ——— (@b+betea)
—azbzcz( c“+cca‘+a“b?) abc(a ctca
=W(bzcz+c2a2+a2b2—4Rr(ab+bc+ca)). (13)
.

From ([3], 5.17)
ab+bc+ca =4r(SR-r),
(be+ab+ca)?<3(b*c*+c2a’+a’b?)
and (13), we have

rete  Tela  Tals o ab+bc+ca
a? b2 c? 48 R%r?

2(5R——r) 2R-1)

3R? '

(ab+bc+ca—12Rvr)

(14)

By (14) and the inequality 5.1 in [3], we obtain (H).

D. M. Milosevi¢, Pranjani, YU
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Ceva-Dreiecke

Ein einem Dreieck ABC einbeschriebenes Dreieck 4,B;C; (Fig. 1) moge Ceva-
Dreieck heissen, wenn sich die drei Transversalen A4,, BB,, CC, in einem Punkt S
schneiden. Nach dem Satz von Ceva tritt dies genau dann ein, wenn die drei Teil-
verhiltnisse

[ABC|]=—1t<0; [BCA)]=—0<0; [CAB|]=-0<0 €))
der Gleichung geniigen

orog-t=1. 2

Figurl. a

Im folgenden soll gezeigt werden:

Satz 1: Gegeben sei ein beliebiges Dreieck ABC und ein ebenfalls beliebiges Dreieck
AoBoCy (Fig. 1). Dann gibt es genau ein dem Dreieck ABC einbeschriebenes Ceva-
Dreieck A\B,C,, das dem Dreieck AyByC, dhnlich ist.

Beweis: Zunidchst weisen wir die Existenz eines solchen Dreiecks 4,B,;C; nach. Dazu
fiilhren wir ein Koordinatensystem ein, das dem vorgegebenen Dreieck ABC nach
Figur 2 angepasst ist.

Aus der Figur konnen die Bezeichnungen fiir die Masszahlen der Winkel (im Bogen-
mass) sowie die Koordinaten der Punkte (in Abhédngigkeit von den Teilverhéltnissen
o, o, 7) abgelesen werden. Dabei diirfen wir ohne Einschrinkung der Allgemeinheit
voraussetzen, dass

b,c,b—aeR*; aeR; o,p,neRY;, o+p+y=n. 3

\
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