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Kleine Mitteilungen

A supplement to Eddy’s paper
In El. Math., Vol. 41/5, was published the following inequality for a triangle ABC

> n,<14R-19r, *
where n,, n,, n. are the Nagel cevians, R is the circumradius and r the inradius of the

given triangle.
The following inequality

Y n,<10R—11r (1)
is more precise than the nequality (*).
Proof. Let /N, denote the join of the incenter 7 and the point of contact N, of the
corresponding excircle with side BC of a given triangle ABC (similar for /N, and

IN,). Applying the formulas > a*=2(s2—4Rr—r?) and ), bc=r>+5s*+4Rr, where
s represents the semiperimeter of ABC, to the inequality

YIN,<V6Y a?—6 bc+9r?

in [2], we obtain

>IN, <V6s2—T2Rr—9r%. ()
Then, since ([1], p. 50)

s2<4R>+4Rr+3r%,

\
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(2) implies

S IN,<V24R>*—48Rr+9r* . 3)

The inequality /24 RZ— 48 Rr + 9> < 8 R — 13r is equivalent to 2r < R in [1].
On the basis of this conclusion, from (3) we get

>IN, <8R—13r. 4)
Therefore, starting with the inequalities ([2], p. 129;'[1], p. 103)

dng <> AI+Y IN, and Y AI<2(R+r),
we conclude that (1) holds. Equality in (1) occurs only if the triangle is equilateral.

D. M. Milo$evi¢, Pranjani, YU
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Werte zwischen dem geometrischen und dem arithmetischen Mittel zweier Zahlen

In [1] wird fiir b > a > 0 die folgende Ungleichung bewiesen

a b b-a
v (1 <[5 ®

e 2

Definiert man fira>0Qund 5> 0

r r\ 1/r
(“ +b ) falls r+ 0
M, (a, b) = 2
Vab falls r=0
sowie
b—a
—— falls a%b
L(a, b)= {logb—1loga
a falls a=05
so gilt fiir a # b[2]

My(a, b) < L(a, b) < My/3(a, b). 2)
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Eine Verschiarfung von (2) findet sich in [3]. In dieser Note wird eine Ungleichung
vorgestellt, die (1) und (2) als Spezialfille enthdlt. Uberdies werden sich einige
interessante neue Ungleichungen ergeben.

Fortan sei a > 0, b > 0 und a # b vorausgesetzt.

Satz: Ist die Funktion f: [a, b)] = R Riemann-integrierbar und positiv und die Funk-

+b
tion g: [ Vab, 2 5 ] — R streng monoton wachsend, so gilt

g(Yab) <+—;
§f(@)at

wobei A (f) = Vt(a+ b — 1) sei.
Beweis: Durch Anwenden der geometrisch-arithmetischen Ungleichung und wegen

h(=Vab+(t—a)(b-1)

b
[ g (h(e)) at (a+ b)
<9

erhilt man
Vab < h(p) < %P—
a+b

fiir alle t € (a, ), t *+ . Wendet man darauf die Funktion g an und multipliziert

die entstehende Ungleichung mit f(¢), so folgt die behauptete Ungleichung durch
anschlieBende Integration. Q.E.D.

1. Beispiel: Wahlt man f(f) =1 und g (x) = log x, so liefert der Satz die logarithmierte
Form von (1).

2. Beispiel: Fiir ¢c>0,d>0 und c+d sei a=)c, b=Vd, f()=1"" und g (x)= x>
Hier erhélt man

MO(C, d) < L(C, d) < MI/Z(C’ d)
also gerade die Ungleichung (2).

3. Beispiel: Mit £(¢) = t~! und g (x) = x* liefert der Satz die Ungleichung

(@b)? < (b*—a®)(a*+4ab+b?) <(a+b)4'

12(log b — log a) 2
Die rechte Seite von (3) 148t sich wegen

b2__a2
b R —
24 <logb-loga

3)
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abschwichen zu
b* - a* 2 a+b\*
+— (a b)? :
12(ogb—loga) « 3 @Y <( 2 )
Setzt man hierin ¢ = a* und d = b*, so bekommt man die Ungleichung

L(c,d) <3M,;(c,d)—2My(c, d). 4)

Eine elementare Rechnung zeigt, dass die beiden folgenden Ungleichungen dquivalent
sind
(5—V24)4S—3-S(5+V24)4 (*)
3 M1/4(C, d) - 2M0(C, d) = Ml/z(c, d) .

Dies zeigt, daB3 (4) bei Bestehen von (*) schwicher ist als die rechte Seite von (2). In
allen anderen Fillen ist (4) jedoch schirfer.

4. Beispiel: Fiir f(f)=(t(a+b—1)""? und g(x) = x liefert der Satz die folgende
Ungleichung

2 2 . b—a 1
arcsin <

a+b<b—-a b+a Vab '

Das Auffinden weiterer Ungleichungen mit Hilfe des obigen Satzes sei dem interes-
sierten Leser iiberlassen.

H.-J. Seiffert, Berlin, BRD
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The inscribed simplex in a centrally symmetric convex body in E”

I. M. Yaglom and V. G. Boltyanskii in their beautiful book, see [1], prove that a
general triangle cannot be contained in a centrally symmetric convex figure whose
area is less than twice that of the triangle. Fary and Redei generalize in [3] the above
result for a simplex p inscribed in a centrally symmetric convex body F in E”. In the
present note, using an elegant theorem of G. D. Chakerian, see [2], we obtain a short
proof for the inequality

|Flzn]|p|
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where by | K | we denote the volume of the convex body K. Fary and Redei’s result is:

|F|2(

" Vlpl if i
n/2 p 1I n 1S even

n . .
|F|2((n—l)/2) lp| if nisodd.

Our result is the best possible only for the case n=2, 3.

Theorem. Let F be a centrally symmetric convex body in E” and p=4,4,...Ap4;
an inscribed simplex. Then it follows that:

|Flzn|p|.

Proof. Let 0 be the center of F and A; the centrally symmetric of the point 4;. We
denote by p’ the simplex Aj45... A,+;, and by P the n-simplex circumscribed to F
with its facets parallel to those of p. It is not difficult to prove that:

|P|zn"|p’|=n"|p|. (1)

Indeed, we consider the parallel plane from each vertex 4] to the opposite facet. These
planes, intersecting each other, form a n-simplex P, with its facets parallel to the
facets of P. The points A; are the centroids of the facets of P; and obviously P, is
included in P. Therefore

|P|=|Pi|=n"|p'|=n"|p|.

Now using Chakerian’s theorem, see [2], we will have:
|FI*=|P||p|"",

and from (1)
|FI"=n"|p|"

or,

|F|=n|p|.
George A. Tsintsifas, Thessaloniki, Greece
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The diophantine equation (x2— 1) (»*—1) = (z>— 1)?: a footnote
After my paper [1] had appeared, I noticed that the solution

(x,y,z) = (155, 48049, 2729)

given therein can be deduced from a result of Szymiczek’s on triangular numbers in
geometric progression, mentioned in [2].

A triangular number is an integer of the form ¢, = n(n+1)/2, with n a positive inte-
ger. Szymiczek’s result is that 777, ¢;364, f24024 are in geometric progression, that is,

117 * taaooa = (f1364)? -
This can be written as

(2-77+1)2= 1} {(2-24024 + 1)2— 1} = {(2- 1364+ 1)2— 12,
(1552 1) (480492 — 1) = (2729%— 1)2.

Shoichi Hirose, Mita High School, Tokyo, Japan
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Aufgaben

Aufgabe 944. Fiir p > 1 bestimme man

1

sup {— }f(x) log x dx f(x”' ch |f(t)]dt)pdx = 1} .
0 0 0

A. A. Jagers, Enschede, NL

Losung: Ist f: [0, 1] — R stetig, so ist die durch

le(t)Idt fir 0<xs1
X 0

|£(0)] fir x=0,
F(x):={
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