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Kleine Mitteilungen

A Supplement to Eddy's paper

In El. Math., Vol. 41/5, was published the following inequality for a triangle ABC

Ylna^l4R-l9r, (*)

where na9 n^, nc are the Nagel cevians, R is the circumradius and r the inradius of the

given triangle.
The following inequality

Ylna^l0R-llr (1)

is more precise than the nequality (*).

Proof. Let INa denote the join of the incenter / and the point of contact Na of the

corresponding excircle with side BC of a given triangle ABC (similar for INb and

INC). Applying the formulas Yl <*2 2 (s2 - 4R r- r2) and Yl b c r2 + s2 + 4R r, where
s represents the semiperimeter of ABC, to the inequality

YjlNa^]/6Yla2-6Ylbc + 9r2

in [2], we obtain

YllNa<zY6s2-72Rr-9r2 (2)

Then, since ([l],p. 50)

s2«*4i.2 + 4JRr + 3r2,
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(2) implies

YlINa <_ ]/24R2-48Rr + 9r2

105

(3)

The inequahty Y24R2-4SRr + 9r2 _£ 8/. - 13 r is equivalent to 2r <> R m [1]
On the basis of this conclusion, from (3) we get

YllNa<LSR-l3r (4)

Therefore, starting with the inequahties ([2], p 129, [1], p 103)

Ylna<YlAI + YllNa and £_4/<; 2(i* + r),

we conclude that (1) holds Equality in (1) occurs only if the triangle is equilateral

D M Milosevic, Pranjam, YU
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Werte zwischen dem geometrischen und dem arithmetischen Mittel zweier Zahlen

In [1] wird fur b > a > 0 die folgende Ungleichung bewiesen

\b-a^<«<m (i)

Definiert man fur a > 0 und b > 0

MMb) m 1/r

sowie

ab

b-a

falls r=t=0

falls r=0

falls a 4= b
L(a,b)= \ logi-loga

a falls a b

so gilt fur a 4= b [2]

M0(a, b) < L(a, b) < Mx/2(a, b) (2)
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Eine Verschärfung von (2) findet sich in [3]. In dieser Note wird eine Ungleichung
vorgestellt, die (1) und (2) als Spezialfälle enthält. Überdies werden sich einige
interessante neue Ungleichungen ergeben.
Fortan sei a > 0, b > 0 und a + b vorausgesetzt.

Satz: Ist die Funktion /: [a, b] -»IR Riemann-integrierbar und positiv und die Funk-

a + b
tion#: fa~by- R streng monoton wachsend, so gilt

\f(t)g(h(t))dt
gtffbX*-, <Jü±*

J/(0*
X '

wobei h(t) ]/t(a + b-t) sei.

Beweis: Durch Anwenden der geometrisch-arithmetischen Ungleichung und wegen

h(t) yab+(t-a)(b-t)
erhält man

Ya~b<h(t)<^
a + b

für alle t e (a, b), t + —-—. Wendet man darauf die Funktion g an und multipliziert

die entstehende Ungleichung mit /(/), so folgt die behauptete Ungleichung durch
anschließende Integration. Q.E.D.

1. Beispiel: Wählt man/(f) 1 und g (x) log x, so liefert der Satz die logarithmierte
Form von (1).

2. Beispiel: Für c> 0, d> 0 und c *d sei a }/c, b Yd, f(t) t~x und g(x) x2.

Hier erhält man

M0(c9 d) < L(c9 d) < Mxl2(c9 d)

also gerade die Ungleichung (2).

3. Beispiel: Mit/(/) t"x und g (x) x4 liefert der Satz die Ungleichung

^(b2-a*)(a2 + 4ab + b2) /a + M4
{ab)< i2(tog_-kg_) <l-T-)- (3)

Die rechte Seite von (3) läßt sich wegen

b2-a2
2ab<

log b - log a



El Math Vol 42, 1987 107

abschwachen zu

b4-a4 2
¦ + ¦ »*<F$12 (log b -loga) 3

Setzt man hierin c a4 und d b4, so bekommt man die Ungleichung

L(c, d) <3Mx/4(c, d)-2M0(c, d) (4)

Eine elementare Rechnung zeigt, dass die beiden folgenden Ungleichungen äquivalent
sind

(5 - Y24)4 <>-j<L(5 + Y~24)4 (*)

3Mx/4(c, d) -2M0(c, d) ;> Mx/2(c, d)

Dies zeigt, daß (4) bei Bestehen von (*) schwacher ist als die rechte Seite von (2) In
allen anderen Fallen ist (4) jedoch scharfer

4 Beispiel Fur f(t) (t(a +b-t))~x/2 und g(x) x liefert der Satz die folgende
Ungleichung

2 2 b-a 1

< arcsin < -
a + b b — a b + a ^ab

Das Auffinden weiterer Ungleichungen mit Hilfe des obigen Satzes sei dem interessierten

Leser überlassen
H -J Seiffert, Berlin, BRD
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The inscribed simplex in a centrally Symmetrie convex body in En

I M Yaglom and V G Boltyanskii m their beautiful book, see [1], prove that a

general triangle cannot be contained in a centrally symmetne convex figure whose
area is less than twice that of the tnangle Fary and Redei generahze in [3] the above
result for a simplex p inscribed in a centrally symmetne convex body F m En In the
present note, using an elegant theorem of G D Chakerian, see [2], we obtain a short
proof for the inequahty

\F\*n\p\
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where by | K | we denote the volume of the convex body K. Fary and Redei's result is:

IFI _>
#Ä

I I p I if n is even

'^((.-D*)1'1 if"isodd

Our result is the best possible only for the case n 2,3.

Theorem. Let F be a centrally Symmetrie convex body in En and p=AxA2...An+x
an inscribed simplex. Then it follows that:

\F\^n\p\.

Proof. Let 0 be the center of F and A\ the centrally Symmetrie of the point At. We
denote by p' the simplex A\A2...A'n+x, and by P the w-simplex circumscribed to F
with its facets parallel to those ofp. It is not difficult to prove that:

\P\^>nn\p'\ nn\p\. (1)

Indeed, we consider the parallel plane from each vertex A\ to the opposite facet. These

planes, intersecting each other, form a w-simplex Px with its facets parallel to the
facets of P. The points A\ are the centroids of the facets of Px and obviously Fi is

included in P. Therefore

\P\^\Px\ nn\p'\ nn\p\.

Now using Chakerian's theorem, see [2], we will have:

\F\n^\P\\p\n-x,

and from (1)

\F\n>.nn\p\n

or,

\F\^n\p\.
George A. Tsintsifas, Thessaloniki, Greece
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The diophantine equation (x2 — 1) (y2 — 1) « (z2 — l)2: a footnote

After my paper [1] had appeared, I noticed that the Solution

(x,y,z) (155,48049,2729)

given therein can be deduced from a result of Szymiczek's on triangulär numbers in
geometrie progression, mentioned in [2].
A triangulär number is an integer of the form tn n(n +1)/2, with n a positive integer.

Szymiczek's result is that tll9 tX364, t24024 are in geometne progression, that is,

'77 * ^24024 ('1364) •

This can be wntten as

{(2-77+ l)2- 1} {(2-24024+ l)2- 1} {(2-1364+ l)2- l}2,

(1552- 1) (480492- 1) (27292- l)2.

Shoichi Hirose, Mita High School, Tokyo, Japan
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Aufgaben

Aufgabe 944. Für p > 1 bestimme man

sup l-i/c
l o

x) log x dx
0 \ 0

Lösung: Ist f. [0,1] -? R stetig, so ist die durch

A. A. Jagers, Enschede, NL

1/(0)1 für x 0,
F(x):=\ 1

x o
j |/(0I* für0<x_sl
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