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Fine neue Funktionalgleichung

zur Bestimmung elliptischer Integrale erster Gattung
und ihrer Umkehrungen

1. Das Problem

Die Berechnung des Parémeterintegrals

" dt
Feim = = aom

(1)

bereitet in der Ndhe des Arguments
x=1—¢ 2

Schwierigkeiten. Mit Hilfe der Funktionalgleichung

F(x|m)=K(m)—F(I/ ———1—:—x—2—2—
l—-mx

lasst sich das Argument x entsprechend

B B e(2—e¢)
F(l1—¢|m)=K(m) F(l/vli_m(l__g)2

auf so kleine Werte reduzieren, dass nur wenige Glieder der Reihenentwicklung

m) 3

m) @

1 1
F(zlm)=z+—6—(1+m)z3+—‘-1-6-(3+2m+3m2)25+

1
+—11—2—(5+3m+3m2+5m3)z7+

1
+—1—1—5—2—(35+20m+18m2+20m3+35m4) 22+

1
+—287(63+35m+30m2+30m3+35m4+63m5)z”+... (5)

benoétigt werden, um die gewiinschte Genauigkeit zu erhalten. Die Reihenentwicklung
(5) erhélt man durch Entwicklung des Integranden

1
Va-») (1-mnA)

y() = (6)
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in eine Potenzreihe mit anschlieBender gliedweiser Integration. Da im Integrations-
intervall die binomische Reihe gleichmissig konvergiert, liefert die gliedweise Inte-

gration ebenfalls eine konvergente Reihe.

Von besonderer Bedeutung ist, dass in der benutzten Funktionalgleichung der Modul

m unverandert bleibt.

2. Herleitung der Funktionalgleichung
Die Substitution

1-22

l—-m:z

2

fiihrt den Integranden (6) in die Form

1 1—-mz?

Va-B)(-m#) (-mz

und das Differential in

(1—-m)z

=D A

iiber, so dass die einfache Beziehung
dt _ dz
V- (1-mr) V(=23 (1-m2z?

resultiert. Das Minuszeichen vertauscht die aus der Umkehrung von (7)

resultierénden Integrationsgrenzen

z=1 fir t=0
und

1—x? )
z=l ———= fir t=x.
l—-mx

Auf diese Weise wird das Parameterintegral (1) in
1
dz
F(x|m)=
Gelom) j V(-2 (1-mz?)

1-x?
1-mx?

™)

@®)

)

(10)

(11)

(12)

(13)

(14)
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iberfiihrt, woraus mit

F(1|m)=K(m) (15)
die Beziehung

1—x?

F(x|m)=K(m)—F( 3

m) 3)

1-mx

hervorgeht (s. Abschnitt 1). Nach M. Abramowitz und I. A. Stegun [1] bedeutet K (m)
das vollstiandige elliptische Integral erster Gattung, welches fiir |[m| < 1 aus

2 . 3\2 . 3.
g 1o ol o e ]

berechnet werden kann und dort in Schritten von 0,01 von m=0,00 bis m=1,00
tabuliert ist.

3. Erstes Anwendungsbeispiel

Wihlt man als Modul m = 0,5 so sei als erste Aufgabe gestellt, das Integral

F(x]05) =] a ()
x]0,5) =
o Va1 -2)(1-057
fiir das Argument x = 0,9999 zu berechnen.
Die erzeugende Funktion
1
y()= 7 (18)

(1= (1-0,5¢)

ist in Figur 1 analytisch und in Figur 2 graphisch dargestelit.

Die Integration bedeutet graphisch die Bestimmung des in Figur 2 schraffiert darge-
stellten Flicheninhaltes bis zum Argument x.

Die Funktionalgleichung fiihrt auf

F(0,999910,5) = K (0,5) — F(0,0199990,5) 19)
wobei das vollstandige Integral den Wert
K (0,5) = 1,854075 (20)

besitzt. Unter Verwendung der fiir m = 0,5 geltenden Reihenentwicklung
19 63 ., 867 3069

1 3 5 9 11
= e + + ... 21
FGI05) =2+ 2+ 12+ 202 + 150327 Y 0112 - (2
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boyit)
|
3,0 ' ;
|
|
|
m=0,5 I
I
t y@® I
0,0 1,0000 :
0,1 1,0076
0.2 1,0310 '
0,3 1,0727 I
04 1,1375 2,0 t
0,5 1,2344 |
0,6 1,3804 I
0,7 1,6694 |
0,8 2,0211
09 2,9742 |
0,95 4,7675 |
0,99 9,9268 |
0,999 31,5991 |
0,9999 99,9925 |
1 e} 10 TN 1
‘ \ '
Figur 1. \ |
\ |
F(x!0,5) |
(N IP\/ "
\ i
I
N : _
0 X 0,5 1,0 t
Figur 2.
folgt
F(0,019999]0,5) = 0,019999 + 0,000002 + 0,000000 = 0,020001 . (22)

Um die sechste Stelle hinter dem Komma zu sichern, bedarf es hier nur zweier
Glieder der Reihe, wobei das dritte Glied als Kontrollglied dient. Der gesuchte Wert
betragt somit:

F(0,99990,5) = 1,834074 . (23)

\
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Der hier entwickelten Methode sei die Bestimmung des Integrals mittels der Trans-
formation von J. Landen [2] gegeniibergestellt, bei welcher die Substitution

le—z
1+1/_ V . (24)
(I—V~)2

auf die Beziehung

I=

2 -V =-x»(1-mx? + 2 4
Pl = F(Vl Ya=x) (1—mx) +Vmx Vr’ﬁz) a5
1+ Vm 2 (1+)m)
fiihrt mit dem reduzierten Argument
x1=V1 VA=xH) (1—mxD) +Vm x 6
2
und dem erhéhten Modul:
4
T @7
(A +Ymy?
Bei sukzessiver Anwendung der Argumenterniedrigung folgt:
1/ my-my-ms...m
F(xlm)=V L2 3" artanhx,. (28)
m
Die Moduli konvergieren gegen den Wert 1 und betragen:
m; = 0,970562749 ' (29)
my = 0,999944204 (30)
m3 = 1,000000000 . (31)

Da der Wert m; mit der hier festgelegten Genauigkeit (9 Dezimalen) 1,000000000 be-
trigt, sind mit n =3 die Argumente bis x3; zu bestimmen. Man erhilt:

x; = 0,921130994 (32)
x,=0,914431658 (33)
x3=0,914418903 . (34)

Hieraus folgt:

F(0,99990,5) = 1,180340599 - 1,553852491 = 1,834075 . (35)
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Beide Rechenwerte stimmen gut miteinander iiberein. Es ist jedoch nicht zu iiber-
sehen, dass die zweite Methode ungleich viel aufwendiger ist als mittels der neuen

Funktionalgleichung.

4. Zweites Anwendungsbeispiel

Bei dem Integral

" dt
F(x|——2)—g V-0 4 +20)

ist der Modul m negativ. Die erzeugende Funktion

1
Va-2) 1+28)

y(@) =

ist in Figur 3 analytisch und in Figur 4

| y(t)

graphisch dargestellt. 3.0
m=-=2
t y()
0,0 1,0000
0,1 0,9951
0,2
0,9821 =4
0,3 0,9650
0,4 0,9497
0,5 0,9428
0,6 0,0531
0,7 0,9951
0.8 1,1038
09 1,4173
0,95 1,9122
0,99 4,1201
0,999 12,9218 1.0 4
0,9999 40,8286
1 0
Figur 3.

Figur 4 ist zu entnehmen, dass die erzeugende

Rﬁ\imum

(36)

(37)

Figur 4.

Funktion bei ¢ = 0,5 ein Minimum hat.

\

7

0.5

1,0
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Mit Hilfe der Substitution

t=)1-22 (38)

lasst sich das Parameterintegral umformen in

1 1 dz
F(x|m)= J (39)
V1—m 5
hi-x V(l-—zz)(l— = 22)
m-—1
d.h.:
1 m m
F = - —x2 . 4
G lm) ml"(m-l) Py m—l)] (40)
Die Funktionalgleichung
1-Xx?
FX|M)=KM) - F| | ~—757 | M (41)
liefert mit
X=)1-x2 (42)
und
M=— (43)
m—1
die Beziehung:
m m Y1—m-x m
FlY1=%2 =K|——]-F . 44
(l * m—l) K(m—l) (Vl—-mx2 m—l) @9
Nach Einsetzen folgt die fiir negative Moduli giiltige Endbeziehung:
Fx|m) =——i pl=mx|_m ) (45)
Vi-m  \YVi-mx* | m—1
Im vorliegenden Fall m = — 2 resultiert:
1 V3-x | 2
F()c|—-2)=V§F(H_2x2 —3—-) (46)

Beziehung (46) ist besonders fiir kleine Argumente x geeignet, die Integralfunktion
numerisch zu bestimmen. Fiir Argumente in der Ndhe des Grenzwertes 1 eignet sich
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Beziehung (40), welche fiir m = — 2 die Form annimmt:

1 2 2
F(x|-2)=—=|K|=|-F|V1-x*|=]|. 47
R -

Fiir das Argument x = 0,9999 folgt die Berechnungsformel:
FQ© 9999|-—2)-—-—-1—— K(—z—) -—F(O 014142 —2—-) (48)
> Vg 3 b 3 *
Nach (16) gilt:
2
K(—3—) =2,028959 . (49)
Die Reihenentwicklung (5) liefert fiir m = %:
2 5 17 215 5603
Flz|=|=z+ 3+ S+ T+ 4., 50
(z 3) TR T T 1207 T 756 7 Te3312 - (50)

Nach Einsetzen des Argumentes z = 0,014142 erhilt man:
F(0,014142|-2) = 0,014142 + 0,000001 = 0,014143 . (51)
Hieraus folgt:

F(0,9999|—-2) =1,163225. (52)

5. Umkehrung der Integralfunktion

Wird der Flacheninhalt gegeben und ist das Argument x gesucht, so liegt ein Um-
kehrproblem vor. Die Umkehrung des elliptischen Parameterintegrals F (x|m) fiihrt
nach C. G. J. Jacobi [3] auf die nach ihm benannte Funktion

x(F|m)=sn(F|m) (53)
und ihre Entwicklung:

1
x(F]m)=F-—é—(l+m) F3+—l-§6—(1+14m+m2) F3+

+

<040 (1+135m+135m2+m?) F' +

+

3621880 (1+ 1228 m + 5478 m*+ 1228 m*+ m*) F° + (54)

1

_r ) .,
+ 39916800(1+11069m+165826m +165826m

+11069m*+m®) F'' + ...
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Die Umkehrung der Funktionalgleichung liefert dagegen die Beziehung

_ 1—sn*(K—F|m)
x(Flm)_Vl-m-snz(K——Flm) (53)

entsprechend:
x(Flm)=cd(K—F|m). (56)
Die Entwicklung der Jacobischen Funktion cd

I-m , 5-6m-—m’

cd(u|lm)=1- S ut = ut+ ... 57
liefert mit u = K (m) — F die Potenzreihe:
1— - — m2
x(Flm)=1+———§—nl[K(m)—F]2+5—6—Z;—Ln——[K(m)—F]“+.... (58)

Fiir m=0,5 folgt unter Beriicksichtigung des vollstindigen Integrals

K (0,5) = 1,854075 (59)
die Reihe:
1 3
x(F|0,5)=1+ Y [1,854075 - F)* + ETY [1,854075—F]*+.... (60)

Wird ein Integralwert F=1,8 vorgeschrieben, welcher nahe an den bestimmten Wert
K (0,5)=1,854075 heranreicht, so geniigen schon zwei Glieder der Potenzreihenent-
wicklung, um das zugehorige Argument

x(1,8]0,5) = 1 — 0,000731 + 0,000000 = 0,999269 ‘ (61)

zu bestimmen.
Die Umkehrung der Beziehung

x(Flm)-:cn[K(-'—’-I—’-n:—l-)—Vl—mF -mi_l—] (62)

gestattet die Berechnung der Umkehrfunktion fiir negative Moduli. Die Entwicklung
der Jacobischen Funktion cn

1 , 1+4m , 1+4dm+16m*
=]—— - +... 63
cn(ulm)=1 2u+ Y 220 u (63)
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liefert mitu=K (_mmTl) — V1 —mF die Potenzreihe:

1

x(F{m)=1——é~[K(%)—Vm—1F
+ 1+4m K(m’fl_l)-— m-IF]‘t—

2
+

24
B 1+44m+16 m?

720 [K (Z’_n—_l) ~Ym~1F

6
g T (64)

Fiir m = — 2 folgt unter Beriicksichtigung des vollstindigen Integrals

K(—i—) = 2,028959 (65)

die Reihe:

11
x(F|-2)=1- —:li- [2,028959 —1,732051 F]* + 73 [2,028959 — 1,732051 F]*

- %6- [2,028959 —1,732051 F16+... (66)

Soll das Argument x (F|—2) an der Stelle F=1,1 berechnet werden, die nahe am
Wert des vollstindigen Integrals K (—2)=1,171420 heranreicht, so geniigen schon
drei Glieder der Potenzreihenentwicklung, um den gesuchten Zahlenwert

x (1,1|-2) = 1,000000 — 0,007651 + 0,000034 — 0,000000 = 0,992384 67)

zu bestimmen.

6. Verlauf der Integralfunktionen und ihrer Umkehrungen

In Figur S sind die Zahlentafeln der beiden Integralfunktionen und ihrer Umkehrun-
gen zusammengestellt.
Der in Figur 6 dargestellte Verlauf der Integralfunktionen, welcher Figur 2 und 4
zuzuordnen ist, bildet den Abschluss dieser Arbeit.
Die Bestimmung elliptischer Integrale zweiter Gattung und ihrer Umkehrungen ist in
Vorbereitung.

W. Dreyer, Clausthal
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x F(x]0,5) x F(x|-2) F x (F|0,5) F x (F|-2)
0,0 0,0000 0,0 0,0000 0,0 0,0000 0,0 0,0000
0,1 0,1003 0,1 0,0998 0,1 0,0998 0,1 0,1102
0,2 0,2020 02 0,1988 0,2 0,1980 02 0,2013
0,3 0,3071 0,3 0,2961 0,3 0,2934 0,3 0,3045
04 0,4173 0,4 0,3918 0,4 0,3837 04 0,4086
0,5 0,5356 0,5 0,4863 0,5 0,4708 0,5 0,5145
0,6 0,6658 0,6 0,5810 0,6 0,5508 0,6 0,6199
0,7 0,8145 0,7 0,6780 0,7 0,6243 0,7 0,7219
08 0,9939 0,8 0,7821 0,8 0,6909 0,8 0,8159
09 1,2354 0,9 0,9050 0,9 0,7505 0,9 0,8964
0,95 1,4121 0,95 0,9860 1,0 0,8030 1,0 0,9571
0,99 1,6547 0,99 1,0895 1,1 0,8487 1,1 0,9924
0,999 1,7927 0,999 1,1456 1,2 0,8877
09999  1,8341 09999  1,1633 1,3 0,9205 1,1714 1,000

1,4 0,9472
1 1,8541 1 1,1714 1,5 0,9682

1,6 0,9837

1,7 0,9941

18 0,9993

1,8541 1,0000

Figur S.

“ Fix)m)

2,0
1,8541

T~ m= 0,5

/ 117114
1,0

~~m=-2

'

Figur 6. 0 1,0 X
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Kleine Mitteilungen

A supplement to Eddy’s paper
In El. Math., Vol. 41/5, was published the following inequality for a triangle ABC

> n,<14R-19r, *
where n,, n,, n. are the Nagel cevians, R is the circumradius and r the inradius of the

given triangle.
The following inequality

Y n,<10R—11r (1)
is more precise than the nequality (*).
Proof. Let /N, denote the join of the incenter 7 and the point of contact N, of the
corresponding excircle with side BC of a given triangle ABC (similar for /N, and

IN,). Applying the formulas > a*=2(s2—4Rr—r?) and ), bc=r>+5s*+4Rr, where
s represents the semiperimeter of ABC, to the inequality

YIN,<V6Y a?—6 bc+9r?

in [2], we obtain

>IN, <V6s2—T2Rr—9r%. ()
Then, since ([1], p. 50)

s2<4R>+4Rr+3r%,

\
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