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Archimedes was right

(Part Two)

A definition of the sum of a sequence of numbers, inspired by the second method of
Archimedes for calculating the area of a parabolic section, is presented in the first
part of this note. The great advantage of this definition over the standard one is that it
avoids the notion of limit. Archimedes’ second method also suggests a definition of
integral in which limits are not used either; they are replaced by sums of sequences.
This definition, presented in this second part, is simpler than the usual one and, at the
same time, more general.

It should be mentioned perhaps that the «Archimedean» definition of sum leads to
absolutely summable sequences and, similarly, the «Archimedean» definition of inte-
gral produces absolutely integrable functions. If we want to deal with conditionally
summable sequences or improperly integrable functions, then the use of limits
becomes inevitable. However, such notions are necessary only in more advanced
chapters of analysis dealing with questions whose complexity is not really increased
by the involvement of limits.

Calculations of areas and volumes carried out by Archimedes are justly considered as
the point of departure towards integral calculus. Apparently, the direction of the path
leading there was influenced more by the first way in which Archimedes calculated
the area of a parabolic section rather than the second way. To make the description of
the first way shorter, we shall take only a special case and rearrange it as suggested
by O. Toeplitz in his book [3]. Actually, the calculation was taken up and subsequent-
ly developed by later masters in a similarly rearranged form.

\ Figure 6.
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Let us consider the parabola with equation y = x? and let us calculate the area, u (S),
of the part S of the unit square which lies «under» the parabola (figure 6). The base
of the unit square is divided into » segments of equal length. With these segments as
bases two sets of rectangles are erected. The rectangles of one set are just contained in
S and the rectangles of the other set just contain the corresponding portion of S. The
sum of the areas of the former is denoted by /, and of the latter by u,. Then

1/0\2 1/(1\* 1/(2)\2 1 {n—1)\2
by =—\—| +—|—] +—|—] +... +— ,
n n n n n n n n
1(1\2 1/2)\2 1 {n=1\2 1 ([n\2
dy=——] || +.. +— 4]} ;
n n n n n n n n

for every n=1,2,3,... Archimedes was able to calculate these sums explicitly.
Namely,

2 e —
1,,=i(i) O+ 124224 ..+ (n—1)H == 2D n@n=D
n\n 6 n
2
u"=_1_(_1_) (12+22+...+(n—-1)2+n2)=-1_ n(n+1)3(2n+1)’
n\n 6 n

for every n=1, 2, 3,... It follows that

I, <—

3 <tn

forevery n=1, 2, 3,... But, because
Up—ly=—

for every n=1,2,3,..., by Archimedes’ lemma, 1/3 is the only number larger than /,
and less than u, for every n=1,2,3,... On the other hand, /,< u (S) < u,, for every
n=1,2,3,... Therefore,

1
#(S)=-3‘-

Using precisely the same procedure, Bonaventura Cavalieri succeeded, 1880 years
after Archimedes(!), in calculating the area «under» the curve y=x3 and then
«under» y=x* for k=4,5,...,9. Altering the procedure somewhat, Pierre de Fermat
calculated the area «under» the curve y = x¥, for any positive integer k around 1650.

It is not hard to see in this procedure a model for the notion of Riemann integral,
especially in the formulation of Darboux, and for the related notion of Jordan mea-
sure. True enough, it took mathematicians another 200 years or so to arrive at a
conscious and explicit formulation, but what is a mere 200 years compared with 2000?

\



El. Math,, Vol. 42, 1987 85

. al

|

i

1

i

1

|

i

|l

11

Sa.

!

‘I

p!

Wl

ll

,I

]

Cot

Ill

Sl' [

o

‘Pl

o

[

[

[

‘[l

| oyt

1

R | R |R Sot 1

t

1 ;['

l sy

o

! vk

[ [

t [

1 N L

R 3 i3
Figure 7a. Figure 7b.

And during all these years, the ideas latent in the second method of Archimedes re-
mained by and large untapped and underdeveloped, although an isolated opportunity
to develop them arose. Sometime in the 1350’s, Nicole d’Oresme had shown that

—1-+2+—3—+f—+i+ =2 (10)
2 22 24728 '

This sum was already known but Oresme used a geometric method which is relevant
for our discussion. He divided the same planar region into rectangles in two ways.
Each rectangle R, in figure 7 a has base of length 1/2" and height n; therefore its area,
4 (R,), is equal to n/2", for every n=1,2,3,... Each rectangle S, in figure 7b has base
length

1 1 1 1
2n+1+ 2n+2 + 2n+3 + 2n+4 +... 2

which, by (8), is equal to 1/2", for every n=0,1,2,... The height of each rectangle
Sy is equal to 1 and, therefore, its area, u(S,), is equal to 172", for every n=0,1,2,.
Then

UR)+uR)+uRy)+u(Ry)+...=u(So) +p(S))+u(S)+u(S;)+..
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that is,
_1_+3_+i+i+ —1+l+i+—l—+
2 2 2B » T 2 2 2"

Because, by (8), the sum on the right is equal to 2, we have (10).

Archimedes’ determination of the area of a parabolic section illustrated in figure 3,
his finding the sum (2) using figure 4 and Oresme’s finding the sum (10) are all based
on the following property of area which is called o-additivity: if a planar set S is
equal to the union of sets S;, S,, S3,..., such that the common part of any two of
them has the area equal to zero, then the area of S is equal to the sum of the areas of
the sets Sy, S,, S3,... Archimedes’ and Oresme’s calculations show that this property
can be used for the determination of areas of planar sets and also for finding sums of
sequences. If we interpret the integral of a (positive) function as the area of the
«region under its graph», then we can of course use this property for finding integrals.

Figure 8.

Let us re-arrange figure 3 so that the parabolic section becomes the «region under a
curve» as it is customary in calculus books. We obtain something like figure 8. Now,
if the graph of our function is not a part of a parabola, then it is advantageous to
replace the triangles by rectangles. For Archimedes’ trick with triangles obviously
would not work in general and, as we shall see, rectangles allow us to use differential
calculus in its stead. We obtain a picture like that in figure 9.

Let us translate these geometric ideas into analytic language. Only a minimal amount
of notation is needed to do it efficiently.

The length of a bounded interval J, that is, the absolute value of the difference of its
end-points, is denoted by A (J). The characteristic function of an interval J is denoted
by xs. That is, if x is a number belonging to J, then y;(x)=1 and, if x is a number
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Figure 9. Figure 10.
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which does not belong to J, then y,;(x)=0. So, if ¢ is a positive number and J a
bounded interval, then the «region under the graph» of the function ¢ y; is a rectangle
(the shaded region in figure 12) whose base has the length 4 (J), the height is ¢ and,
hence, the area is c A (J).

Using these conventions, which are more-or-less standard, we can formally describe
the situation illustrated in figure 9. Namely, the «region under the graph» of a posi-
tive function f in an interval I can be expressed as a union of non-overlapping rect-
angles (with sides parallel to coordinate axes) if and only if there exist numbers c; and
intervals J;< 1, j=1,2,3,..., such that

SX) =1 x5 (x) + cax5,(x) + €3 05,(x) + caxs,(x) + ... (11)

for every x € I. The integral of the function f in the interval I (the area of the «region
under the graph» of f in I) is then equal to the sum

01/1(.,1)"'02/1(]2)+C3A.(J3)+C4).(J4)+... (12)

Although the class of such functions is already quite wide, Oresme’s derivation of (10)
suggest that it can be widened. For example, it is possible to include some unbounded
functions and it is not necessary to assume that the underlying interval I be bounded.
But of course, some precautions then have to be taken because the area of the «region
under the graph» may be infinite and, besides, it may not be possible (or easy) to
cover the «region under the graph» by rectangles without also covering some points
off that region.

So, let us call Oresme integrable in an interval I any function f for which there exist
numbers ¢; = 0 and bounded intervals J;= I, j=1, 2, 3,..., such that

(1) the sequence

¢1 A1), €24(2), €34(J3), €44 (), ... (13)

is summable; and
(ii) the equality (11) holds for every x € I for which the sequence

€1 20, (%)s €2 x7,(%), €3 145(X), €4 x7,(X), ... (14)

is summable.
The integral of the function f in the interval I is then of course defined to be equal to
the sum (12).

Condition (ii) does not restrict in any way the values of the function f at the points
x € I for which the sequence (14) is not summable; the values of f at such points can
be arbitrary.

Figure 11.
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The graph of an Oresme integrable function f is sketched in figure 10 together with a
choice of rectangles covering the «region under its graph». These rectangles cover also
some points which do not belong to that region, namely all points «above» the point
(x1,f(x1)) and «above» the point (x,, f(x;)). The sequences c; y;,(x1), ¢2xs,(x1)s
€3 X1,(x1), ... and c; xy,(x2), €2 x1,(%2), €3 x7,(X2), ... are not summable.

The class of Oresme integrable functions is still unnecessarily limited by our approach
which is purely geometric in spite of the notation and terminology. To break out of
this limitation, we should make full use of the possibilities present in the algebraic
(calculational) properties of numbers. It is not difficult to do so. Surprisingly enough,
it suffices to remove the restriction that the numbers ¢, c,, 3, ..., in the definition of
an integrable function, be positive. Each integrable function will then be a difference
of two Oresme integrable functions. Indeed, recall that a sequence is summable if and
only if the sequence of its positive terms and the sequence of its negative terms are
both summable. (We are speaking of the summability in the sense of the «Archime-
dean» definition!) Let us adopt the following definition.

A function f will be called Archimedes integrable in an interval [ if there exist num-
bers ¢; and bounded intervals J;< 1, j=1, 2, 3,..., such that

(i) the sequence (13) is summable; and

(i1) the equality (11) holds for every point x € I for which the sequence (14) is sum-
mable.

The integral of the function f over the interval I is then defined to be equal to the
sum (12) and is denoted by

[rda, 17, Jredx,
1 1 1

or by any other symbol customarily used for this purpose.

Obviously, every Oresme integrable function is Archimedes integrable and Archi-
medes integrable functions include many negative functions and functions whose
values are positive at some points and negative at others. But, compared with Oresme
integrability, the definition of Archimedes integrability also widens the class of posi-
tive integrable functions. When we cover the region «under the graph» of a function,
we do not have to stay with the rectangles strictly within that region. If we overshoot
with some, we subtract the areas of rectangles covering the excess. In figure 11, the
subtracted rectangles are shaded.

But there arises the question about the legitimacy of this definition. Because the
numbers ¢; and the intervals J;, j=1,2,3,..., are not uniquely determined by the
function f, the sum (12) which we called the integral of f appears not to be uniquely
determined by f either.

This is of course a perfectly valid objection. What’s more, it applies equally well to
the calculations of Archimedes. If the given parabolic section were divided into
triangles (or perhaps other polygonal figures) in a way different from that of Archi-
medes, would the sum of the areas of these triangles remain the same? Archimedes
assumed that it would. He apparently assumed that there is «a number to be called
the area of the parabolic section S», that is, no matter how S is represented as the
union of a sequence of nonoverlapping triangles, the sum of the areas of such triangles
is equal to the area of S. In other words, Archimedes assumed that the parabolic sec-

A\
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tion is among the planar sets which do have area and that the area is g-additive. But,
because he did not prove this assumption, there is a gap in his argument. On the other
hand, Archimedes was right in that this assumption is in fact correct; it has since been
proved rigorously.

As to our situation, the following statement can be proved; differential calculus or
more elementary methods can be used for this purpose, but either way the proof is
technical.

Let ¢; and d; be numbers J; and K; bounded intervals,j=1, 2, 3, ..., such that

Zlgligp <o, X 1d|a(K) < oo
J= j=
and

2 ¢10(x) = 2. d k()

J= =

for every point x for which

e o] o
lecj| 1(x) <o and 2 [d)] xx(x) < o
J= J=

Then

_Zlch(J,-)=Zlcg,1(Kj).
J= J=

This statement says that the Archimedes integral of a function f in fact does not
depend on the choice of the numbers ¢; and the intervals J;, j=1,2, 3, ..., with the
required properties (i) and (ii). So, it takes care of the objections raised to the defini-
tion.

cA(J)

Figure 12.

Then there is the question of effectively calculating the integral of a given function.
For a large class of functions this question can be answered satisfactorily.

In the definition, the type of the interval [ is in no way restricted; it could be an open,
closed, semi-open, bounded or unbounded interval. Let us now restrict our attention
to the case I = [a, b], where a and b are numbers such that a < b.
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Suppose that J < I is an interval, ¢ a number and that f=cy; (see figure 12). It is
easy to exhibit a function F, continuous in /, such that

F'(x) = f(x) (15)

for every interior point x of the interval I except, possibly the endpoints of the
interval J. It is then equally easy to show that

£ fdi=F(b)— F(a). (16)

By a step-function is usually understood a function f for which there exist numbers c,
and intervals J;, j=1, 2,..., n, such that

n
f=_ZleXJ,-
J=

If f is such a step-function in the interval 7, then, as above, there exists a function F,
continuous in the interval 7, such that (15) holds for all but finitely many points x of 1
and the equality (16) holds again.

Formula (16) is applicable to still more functions. If f is a function having a left limit
at every point of the interval (a,b] and a right limit at every point of the interval [a, b)
then the function f is Archimedes integrable in the interval I =[a,b]. Furthermore,
there exists a function F, continuous in the interval 7, such that the equality (15) holds
for all points x belonging to I save countably many and the formula (16) holds.

So, we have a useful extension of the theorem known as the Newton-Leibniz formula
or the fundamental theorem of calculus. Combined with other properties of the inte-
gral, such as its continuous dependence on the limits of integration or on the integrat-
ed function, this extended fundamental theorem provides a very wide range of
possibilites to calculate integrals of specified functions in specified intervals.

The next question which naturally arises is one about the relation of the Archimedes
integral to other notions of integrability and integral found in the literature. This
question has a very interesting and perhaps surprising answer. It turns out that a func-
tion is Archimedes integrable if and only if it is Lebesgue integrable and the Archi-
medes integral of such a function coincides with its Lebesgue integral. So, the terms
«Archimedes integrability» and «Archimedes integral» are used here only for the
convenience in the exposition and refer to a specific method for introducing the
Lebesgue integral but not to a new notion of integral. We shall not prove this fact; it is
done in the book [1] of Jan Mikusifiski where the «Archimedes» method of intro-
ducing the integral is used in a much wider context than here. The reader may also
find it interesting to compare the «Archimedean» definition with one due to Fréderic
Riesz presented in the book [2] by F. Riesz and B. Szokefalvi-Nagy. In sections 16—17
of this book, integration is treated on the same level of generality as here and it is not
too difficult to use the Riesz method for showing that the Archimedes and the
Lebesgue integrals coincide.

The important properties of the Archimedes integral, which make of it a powerful
tool of analysis, can of course be proved much more directly than by showing first

\
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that it coincides with the Lebesgue integral. Hence, the «Archimedean» definition of
integral is preferable to the Riemann integral in a basic course on integration not only
because of its greater simplicity but also because it leads directly to important appli-
cations. This is apparent to a lesser degree in the cases when the application requires
the integration of a particular function, although in such cases, the Archimedes (that
1s, the Lebesgue) integral represents an advantage, too, because the restrictions on the
usage of methods of calculation are less stringent. But the real advantage of the Archi-
medes integral appears more clearly in cases where whole classes of functions are in-
volved. Because families of functions defined in terms of the Archimedes integral are
usually substantially richer than those defined in terms of the Riemann integral, there
are important problems in mathematics and in its applications which are not solvable
in terms of the Riemann integral but can be solved if the Archimedes/Lebesgue inte-
gral is used.

Ideas pertaining to whole classes of functions (or classes of geometric objects such as
planar figures) transcend the boundaries of the circle of ideas accessible to Archi-
medes. So, it may be fitting to conclude by describing an example which illustrates
our remarks about applications of the integral and, at the same time, indicates the
direction in which mathematics advanced perhaps most markedly beyond the
possibilities available to Archimedes.

A function f such that |f| f is integrable in an interval I is said to be square-inte-
grable in /. Let

en(t) = e™ >

for every real number ¢ and everyn=0, £ 1, 2,...
Now, if f is a 2z-periodic function, square-integrable according to Riemann or
Archimedes and Lebesgue in an interval of length 2 #, then the numbers,

cn=—21;_}nf (1) en(—1) dt, (17

are well-defined for every n=0, £ 1, £ 2,... Moreover, the function f can be recon-
structed from the functions ¢y ey and

Cpeyt+c_ ey, (18)

n=1,2,3,..., up to a possible difference which is completely immaterial from the
point of view of applications.

In applications, the function f is interpreted, say, as an electric signal (current of
varying intensity). The function (18) is (2n/n)-periodic which means that the
frequency of the signal it represents is n times that of the signal f. It is called the n-th
harmonic component of the signal f. The number

If12=o= 170 Par
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is (proportional to) the energy of the signal f in one period. The energy of the signal
(18) is equal to | ¢, |*+|c_, |5, n=1,2,3,...,and

I f12=TeoaP+ (ei P+ e+ (2P e + (e3P +]es ) + ...

which means that the energy of f is equal to the sum of energies of its harmonic com-
ponents.

Somewhat more interesting from the engineering point of view is the following
problem of synthesis. Given numbers ¢, such that

ol + 3 (en+]cnlt) < o, 19)

n=1

one wants to find a 2 n-periodic function f, square-integrable in the interval [— =, 7],
such that (17) holds for every n=0, £ 1, & 2, ... In other words, one wishes to produce
a signal with prescribed harmonic components. Because the total energy of the com-
ponents is finite, it is natural to expect that such a signal would exist.

However, if only the Riemann integration were available, we would not always be
able to produce such a signal. For it is not true that for any numbers c, satisfying
condition (19) there exists a 2 n-periodic function f, Riemann square-integrable in the
interval [—=, n], such that (17) holds for every n=0, £ 1, £2,... None the less, the
stated problem of synthesis has a positive solution. Indeed, it can be proved that, if
the ¢, are arbitrary complex numbers satisfying condition (19) then there exists a
2 n-periodic function f which is square-integrable in the interval [—=, n] such that
(17) holds foreveryn=0,+1,+2,...

Igor Kluvanek, Centre for Mathematical Analysis,
Australian National University, Canberra
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