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c(x) und d(x) sind in diesem Intervall beide fallend und wegen \d'(x) | < 0 1 < 0 4

< |c'(x) | fur x e (2 53, 2 55), wie man leicht sieht, ist ein solches x2 eindeutig
bestimmt

(vn) c(2 6)<c(2 55)<</(2 6) => c(x)<d(x) fur 2 55<_x^26
(vm) c(2 64)<c(2 6)<c7(2 64) => c(x)<d(x) fur 2 6<_x<264

(ix) c (2 64) < l/n => c(x) <d(x) fur 2 64 < x < n

Lemma 6 ist somit bewiesen

Beweis von Lemma 3: Um zu beweisen, dass

e(jc)-jj S(,-x)3-x3 .1,1 1

=/(x)W 2 [8(;r-x)2 + x2]3/2 2 2 5 + 4cosx /W

genau drei Losungen in (0, n) hat, genügt es zu zeigen, dass e' (x) /' (x) genau zwei
Losungen in (0,n) hat Da aber e'(x)=f'(x) zur Gleichung c(x) d(x) von
Lemma 6 äquivalent ist, ist Lemma 3 bewiesen

Nach Abfassung dieser Note wurde ich darauf aufmerksam gemacht, dass Stroeker
und Hoogland meine Ungleichungen (1) und (2) in [2] vermutet haben Sie haben
insbesondere auch versucht, die Vermutung numerisch glaubwürdig zu machen

V Mascioni, Math -Departement ETH-Zunch
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Didaktik und Elementarmathematik

Perfekte Dreiecke

Wir nennen ein Dreieck perfekt, wenn seine Seitenlangen a, b, c, sein Flächeninhalt A,
sein Inkreisradius g und seine Ankreisradien ga, gb, gc ganzzahlig sind und wenn a, b,

Cy Qy Qa, Qb und & teilerfremd sind Beispiele sind am Schluss dieser Studie aufgeführt
Wir geben im folgenden alle rechtwinkligen und alle gleichschenkligen perfekten
Dreiecke an Dann zeigen wir, dass es zu jedem g nur endlich viele perfekte Dreiecke
gibt, wovon fur g _> 2 je mindestens eines weder rechtwinklig noch gleichschenklig ist
Als nächstes beschreiben wir ein Verfahren, mit dem man zu gegebenem g alle perfekten

Dreiecke finden kann Schliesslich geben wir alle perfekten Dreiecke mit l__g__5
an
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a + b + c
Wir verwenden stillschweigend die Formeln A2 s (s - a) (s — b) (s- c) mit s=-

A A A A L

g —, ga gb —-, gc Mit A ist auch s ganzzahlig.
s s-a s-b s-c

Satz 1. Ein pythagoräisches Dreieck ist genau dann perfekt, wenn es primitiv ist.

Beweis: Durch a=u2 — v2, b 2uv, c u2 + v2 mit (u, v) 1, u — v positiv ungerade,
sind alle primitiven pythagoräischen Dreiecke gegeben. Man bestätigt unmittelbar
A uv(u + v) (u — v), g=v(u — v), ga= u(u — v), gb v(u + v) und gc=u(u + v). Die
übrigen pyth. Dreiecke erhält man durch Streckung mit k _> 2 aus den primitiven;
sie können deshalb nicht perfekt sein.

Bemerkung: Zu jedem ge N gibt es mindestens ein perfektes rechtwinkliges Dreieck,
wie die Wahl v g,u g+l zeigt.
Für jedes ungerade g _> 3 gibt es mindestens ein weiteres rechtwinkliges perfektes
Dreieck, nämlich für v 1, u g + 1.

Satz 2. Alle gleichschenkligen perfekten Dreiecke sind durch die folgenden beiden
Scharen gegeben:

(1) a b u4 — v4, c 4uv(u2-v2),
(2) a b= uv(u2+v2), c 2uv(u2—v2),

wo die Parameter den Bedingungen (u,v) l9u — v positiv ungerade genügen.

Beweis: Wegen a b ist die Basis c gerade, c 2d. Für die Höhe hc gilt
A A

hc — z= ___ gfl; (^ ga9 a) muss ein pythagoräisches Tripel sein.
d s — a

1. Fall: d=2kuv, ga k(u2-v2), a k(u2+v2), (u,v) l, u-v positiv ungerade.

_-. • i * • 2kuv(u-v) t 2kuv(u + v) „_ MDamit erhalten wir g und gc Weil u + vzu2,u,v und
u+v u—v

u-v teilerfremd ist, muss k= (u + v) (u-v) sein. Damit ist die Ganzzahligkeit der
Daten a b= (u2-v2) (u2+v2), c 4uv(u2-v2)9 A 2uv(u2-v2)3, g=2uv(u-v)2,
gc 2uv(u + v)2 und ga gb (u2- v2)2 gesichert. Ein gemeinsamer Teiler / von a, c,

g, ga, gc ist ungerade, weil ga ungerade ist. Aus t\(gc-g+4ga+4a),t\(gc-g+4ga-4a)
folgt 118 u4,11 8 v4 und deshalb / 1. Somit sind die Dreiecke perfekt.

2. Fall: d=k(u2-v2), ga 2kuv, a k(u2+v2), (u,v) l, u-v positiv ungerade.

_ kv(u2-v2) J ku(u2-v2) ^.Damit werden g und gc Diesmal muss k uv sein, was
u v

die ganzzahligen Daten a b= uv(u2+v2), c 2uv(u2-v2), A 2u3v3(u2-v2),
g v2(u2-v2), gc=u2(u2-v2) und ga gb 2u2v2 ergibt. Ein gemeinsamer Teiler t
von a, c, g9 ga, gc ist ungerade, weil genau eine der Zahlen g, gc ungerade ist Wie oben
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schliesst man diesmal auf t\(u + v)4, t\(u- v)4 und deshalb auf t 1. Auch diese Dreiecke

sind alle perfekt.

Satz 3. Zu jedem Inkreisradius g gibt es nur endlich viele perfekte Dreiecke. Für
g ^ 2 ist mindestens eines davon weder rechtwinklig noch gleichschenklig; es gibt also
unendlich viele perfekte Dreiecke, die weder rechtwinklig noch gleichschenklig sind.

Beweis: Es seien a <> b ___ c; wir setzen s — a x, s — b=y, s — c z und erhalten

x y z y z xz
s^x+y+z, _42 xvz(x4-v4-z), g2= g2a (x+y+z), g2b= — (x+y+z),

xy x+y+z x v
g2== — (x+y + z), x^y^z. Für festes g ergibt jede Lösung der diophantischen

Gleichung (*) x vz @2(x4-v + z) mit x\g(y + z),y\g(x + z)9z\g(x + y) ein Dreieck

mit den geforderten ganzzahligen Daten. Für z > g ]/3 ist einerseits x y z > 3 g2 x,
andererseits g2(x+ y+z) <* 3g2x; es folgt z<gY3. Wir notieren (*) in der Form
(xz-g2)(yz- g2) g2(z2 + g2); für jeden der endlich vielen Werte von z gibt es

je nur endlich viele Lösungen von (*). Unter den so gefundenen endlich vielen
Dreiecken befinden sich alle perfekten.
Jetzt wählen wir z= 1. Die Gleichung (x —g2)(y —g2) g2(g2+ 1) hat sicher die
Lösung x g3 + g2 + g, y g2 + g; sie erfüllt alle Nebenbedingungen. Die zugehörige
Schar (ungleichschenkliger) perfekter Dreiecke ist a g2 + g + 1, b g3 + g2 + g + 1,

c g3 + 2g2 + 2g mit den Daten A g(g+ l)(g2 + g+ l)=gc, ga=Q+ 1> Qb=Q2+Q+ *•

In einem rechtwinkligen Dreieck musste g s- c z gelten. Wegen z 1 sind für
g _> 2 alle Dreiecke der Schar nicht rechtwinklig.
Damit ist Satz 3 vollständig bewiesen.

Der Beweis von Satz 3 zeigt uns ein Verfahren, das alle perfekten Dreiecke mit
vorgegebenem Inkreisradius g liefert:

(A) Für jedes z mit 1 <, z < g j/3 zerlegt man g2 (z2 + g2) in zwei Faktoren AB, A^B.
Ig2 + A g2 + B\

(B) Von den Paaren (x, v) I 1 wählt man die ganzzahligen aus und

eliminiert daraus diejenigen, die eine der Bedingungen x\g(y + z)9 y\g(x + z)9

z\g(x + y) oder x _> v _> z verletzen.
(C) Mit den verbleibenden Werten berechnet man a9 b, c, &,,£&,(>_•
(D) Zuletzt scheidet man die Lösungen mit (a9 b9 c, g> ga9gby Qc) > 1 aus.

Die folgende Tabelle ist nach diesem Verfahren aufgestellt worden und enthält alle
perfekten Dreiecke mit Inkreisradius 5.

Q a b c Qa Qb Qc A

1 3 4 5 2 3 6 6

2 7

5

15

12

20
13

3

3

4
10

42
15

42
30
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Q a b c Qa Qb Qc A

3 13 40 51 4 13 156 156

16 25 39 5 8 120 120

8 26 30 4 16 48 96
7 24 25 4 21 28 84

8 15 17 5 12 20 60

10 10 12 8 8 12 48

4 21 85 104 5 21 420 420
12 50 58 5 24 120 240
18 20 34 8 9 72 144

15 15 24 9 9 36 108

9 40 41 5 36 45 180

5 31 156 185 6 31 930 930

36 91 125 7 18 630 630

17 87 100 6 34 255 510
13 68 75 6 39 130 390
11 60 61 6 55 66 330

12 35 37 7 30 42 210

J. Binz, Universität Bern und Stadt. Gymnasium Bern-Kirchenfeld

m — s
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Aufgaben

Aufgabe 938. Die folgenden Summen

*(«,..).-5^ 2s )[ 2n

A l2n + 2\(2n+X+n
5,(W'")=J?ol2, + l)\ 2-+1

sind geschlossen auszuwerten.

Lösung

O013-6018/87/02O035-O8$1.50+0.20/0

m — s
m9 ne N

J. Binz, Bolligen

1. I
H

ist der Koeffizient von x25 in (l4-x)2w+1, " W
J ist der Koeffi-

*w____ »\ Izientvonx2(m s) in
(l-x2)2"*1'

Also ist S0(m9n) der Koeffizient von x2m in

((l + x)/(l-x2))2rt+, (l-xr(2w+1>=£Pt2W)^.
y-o\ 2n I
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