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¢(x) und d(x) sind in diesem Intervall beide fallend und wegen |d’(x)| < 0.1 < 0.4
< |¢’(x)| fiir x € (2.53, 2.55), wie man leicht sieht, ist ein solches x, eindeutig be-
stimmt.

(vil) ¢c(2.6) <c(255)<d(26) = c(x)<d(x) fir 255<x<26.
(viii) c(2.64) <c(26)<d(264) = c(x)<d(x) fir 26<x<2.64.
(ix) c(264)<1/zm = c(x)<d(x) fir 264<x<nm

Lemma 6 ist somit bewiesen.

Beweis von Lemma 3: Um zu beweisen, dass

)3 — o3
e(x):=]/§ 8(n—x)’—x _

1 1
2 B(n—x)2+xP? 2

S+4cosx

3
iy =: f(x)
genau drei Losungen in (0, n) hat, geniigt es zu zeigen, dass e’ (x) = f’(x) genau zwei
Losungen in (0,7) hat. Da aber e'(x)=f"(x) zur Gleichung c(x)=d(x) von
Lemma 6 dquivalent ist, ist Lemma 3 bewiesen.

Nach Abfassung dieser Note wurde ich darauf aufmerksam gemacht, dass Stroeker
und Hoogland meine Ungleichungen (1) und (2) in [2] vermutet haben. Sie haben ins-
besondere auch versucht, die Vermutung numerisch glaubwiirdig zu machen.

V. Mascioni, Math.-Departement ETH-Ziirich
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Didaktik und Elementarmathematik

Perfekte Dreiecke

Wir nennen ein Dreieck perfekt, wenn seine Seitenldngen a, b, c, sein Flacheninhalt 4,
sein Inkreisradius ¢ und seine Ankreisradien g,, g, 0. ganzzahlig sind und wenn q, b,
¢, 0, 0z, 0p Und g, teilerfremd sind. Beispiele sind am Schluss dieser Studie aufgefiihrt.
Wir geben im folgenden alle rechtwinkligen und alle gleichschenkligen perfekten
Dreiecke an. Dann zeigen wir, dass es zu jedem @ nur endlich viele perfekte Dreiecke
gibt, wovon fiir ¢ = 2 je mindestens eines weder rechtwinklig noch gleichschenklig ist.
Als néchstes beschreiben wir ein Verfahren, mit dem man zu gegebenem g alle perfek-
ten Dreiecke finden kann. Schliesslich geben wir alle perfekten Dreiecke mit 1 <p <5
an.
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. . : . : +b+
Wir verwenden stillschweigend die Formeln A= s (s—a) (s—b) (s—c) mit s= _".___2__2,
A A A A o :
Q=" Qa= T 0= SR 0= p— Mit A ist auch s ganzzahlig.

Satz 1. Ein pythagoriisches Dreieck ist genau dann perfekt, wenn es primitiv ist.

Beweis: Durch a=u?>—1v% b=2uv, c=u?+v? mit (u,v) =1, u— v positiv ungerade,
sind alle primitiven pythagordischen Dreiecke gegeben. Man bestitigt unmittelbar
A=uvu+v) (u—v), o=vU—0), ga=uU—v), gp=v(u+v) und o.= u (u+v). Die
iibrigen pyth. Dreiecke erhidlt man durch Streckung mit k > 2 aus den primitiven;
sie konnen deshalb nicht perfekt sein.

Bemerkung: Zu jedem p € N gibt es mindestens ein perfektes rechtwinkliges Dreieck,
wie die Wahl v =g, u = o + 1 zeigt.

Fiir jedes ungerade ¢ = 3 gibt es mindestens ein weiteres rechtwinkliges perfektes
Dreieck, namlich firv=1,u =0+ 1.

Satz 2. Alle gleichschenkligen perfekten Dreiecke sind durch die folgenden beiden
Scharen gegeben:

(1) a=b=u*—v*, c=4uv -2,

Q) a=b=uv@?+v®, c=2uvW?*-v?,
wo die Parameter den Bedingungen (u, v) = 1, u — v positiv ungerade geniigen.

Beweis: Wegen a=0b ist die Basis ¢ gerade, c=2d. Fir die Hohe A, gilt

A A
hy=—= a 04; (d, 04, @) muss ein pythagoriisches Tripel sein.

1.Fall: d=2kuv, g,=k@?—v?), a=ku*+v?, (u,v) =1, u—vo positiv ungerade.
2kuv(u=v) und g, = 2k u v(u+v)' Weil u+v zu 2, u, v und
utv u—v

u—v teilerfremd ist, muss k = (u+v) (u—v) sein. Damit ist die Ganzzahligkeit der
Daten a = b= (12— v?) (u?+v?), c=4uv W2—v?), A=2uv@?—v?»> 0=2uv(u-o)?
0.=2uv(u+v)? und g,= g, = (u?— v?)? gesichert. Ein gemeinsamer Teiler ¢ von g, c,
0, 04, 0. ist ungerade, weil g, ungerade ist. Aus ¢ |(o.—o+40,+40a),t| (0.—0+40,—40a)
folgt ¢ |8 u* ¢| 8 v* und deshalb 7= 1. Somit sind die Dreiecke perfekt.

Damit erhalten wir o =

2. Fall: d=kw?-v?, 0,=2kuv, a=ku?*+v?), (u,v)=1, u—v positiv ungerade.
2_,2 K u (u2— v
M_“___f_l und o, = ___u_(_u___v_)_ Diesmal muss k = u v sein, was
: v
die ganzzahligen Daten a=b=uvu?+v?), c=2uv@*—0v?), A=2u%03(u*-0?,
o= v?(u?—v?), 0, = u? (u?—v?) und g, = oy = 2u*v? ergibt. Ein gemeinsamer Teiler ¢
von q, ¢, g, 0., Q. ist ungerade, weil genau eine der Zahlen g, g, ungerade ist. Wie oben

Damit werden o=
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schliesst man diesmal auf t| (u+v)* ¢| (u—v)* und deshalb auf r=1. Auch diese Drei-
ecke sind alle perfekt.

Satz 3. Zu jedem Inkreisradius o gibt es nur endlich viele perfekte Dreiecke. Fiir
o = 2 ist mindestens eines davon weder rechtwinklig noch gleichschenklig; es gibt also
unendlich viele perfekte Dreiecke, die weder rechtwinklig noch gleichschenklig sind.

Beweis: Es seien a < b < c; wir setzen s—a=x, s—b=y, s—c=z und erhalten

xyz
Xy xX+y+z

02= = (x+y+2z), x=y=z Fir festes o ergibt jede Losung der diophantischen

s=x+y+z, AP=xpz(x+y+z), 0= , 2=25 (x+y+2), gd==(x+y+2),
X y

Gleichung (*) xyz=0*(x+y+z) mit x|o(y+2),y|e(x+2),z|o(x+y) ein Drei-
eck mit den geforderten ganzzahligen Daten. Fiir z > o |/3 ist einerseits x y z > 302 x,
andererseits o?(x +y+2z) < 30%x; es folgt z< o V§ Wir notieren (*) in der Form
(xz— 0% (yz— 0% = 02(z% + 0?); fiir jeden der endlich vielen Werte von z gibt es
je nur endlich viele Losungen von (*). Unter den so gefundenen endlich vielen Drei-
ecken befinden sich alle perfekten.

Jetzt wihlen wir z=1. Die Gleichung (x — 0?) (y — %) = 0?(0?+ 1) hat sicher die
Losung x = @3+ 0? + o, y = o + p; sie erfiillt alle Nebenbedingungen. Die zugehdrige
Schar (ungleichschenkliger) perfekter Dreiecke ist a=g*+ o+ 1, b=03+0*+ 0+ 1,
c=0+20%+20 mit den Daten A=p(o+ 1)(@*+o+ )=0, 0,=0+ 1, gy=0*+ 0+ 1.
In einem rechtwinkligen Dreieck miisste ¢ =s— c =z gelten. Wegen z=1 sind fiir
o = 2 alle Dreiecke der Schar nicht rechtwinklig.

Damit ist Satz 3 vollstandig bewiesen.

Der Beweis von Satz 3 zeigt uns ein Verfahren, das alle perfekten Dreiecke mit
vorgegebenem Inkreisradius g liefert:

(A) Fiir jedes z mit 1 < z < o |/3 zerlegt man (22 + @?) in zwei Faktoren AB, A > B.

’+A4 o*+B
(B) Von den Paaren (x, y) = (Q pa e ; ) wihlt man die ganzzahligen aus und
eliminiert daraus diejenigen, die eine der Bedingungen x |o(y +2), y|o(x + 2),
z|e(x +y) oder x = y = z verletzen.
(C) Mit den verbleibenden Werten berechnet man a, b, c, g,, 05, 0.

(D) Zuletzt scheidet man die Losungen mit (a, b, ¢, o, 04, 0, 0c) > 1 aus.

Die folgende Tabelle ist nach diesem Verfahren aufgestellt worden und enthilt alle
perfekten Dreiecke mit Inkreisradius 5.

/] a b c Qa @b Qc A
1 3 4 5 2 3 6 6
2 7 15 20 3 4 42 42

W
t—
N
[y
w
w
—
(=]

15 30
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(] a b c Ca Qb Qc A
3 13 40 51 4 13 156 156
16 25 39 5 8 120 120
8 26 30 4 16 48 96
7 24 25 4 21 28 84
8 15 17 5 12 20 60
10 10 12 8 8 12 48
4 21 85 104 5 21 420 420
12 50 58 5 24 120 240
18 20 34 8 9 72 144
15 15 24 9 9 36 108
9 40 41 5 36 45 180
5 31 156 185 6 31 930 930
36 91 125 7 18 630 630
17 87 100 6 34 255 510
13 68 75 6 39 130 390
11 60 61 6 55 66 330
12 35 37 7 30 2 210

J. Binz, Universitiat Bern und Stddt. Gymnasium Bern-Kirchenfeld
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Aufgaben

Aufgabe 938. Die folgenden Summen:

Sy (m. ) i= i (2n+l)(2n+m—-s)

s=0\ 28§ 2n

n 2n+2\(2n+1+m—s
S = , , N
1 (m, ) sz‘o(2s+l)( 2n+1 ) oh RE

sind geschlossen auszuwerten.
J. Binz, Bolligen

Losung

2n+m-—s

2n+1
1. ( " ) ist der Koeffizient von x?* in (1+ x)2"*1, ( .

2s 1
: 2(m=s) 3y
zient von x in a —x2)2"+' .

Also ist Sy(m, n) der Koeffizient von x2™ in

) ist der Koeffi-

(1+x)/(1— x2)2n*+1 = (1 — x)~C@n+D = i (j+ 2”) X
j=0 2n
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