
Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 42 (1987)

Heft: 2

Artikel: Zur Abschätzung des Brocardschen Winkels. II

Autor: Mascioni, V.

DOI: https://doi.org/10.5169/seals-40031

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-40031
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


El Math Vol 42 1987 35

3 D Jarden, Recurrmg Sequences Third edition (1973), Riveon Lematematika Israel, Chapter 29
4 D Kaiman The Generahzed Vandermonde Matrix Math Magazine 57, no 1,15-21(1984)
5 K. S Miller Linear Difference Equations New York W A Benjamin Ine (1968), X+ 165 pages
6 M R Spiegel Finite Differences and Difference Equations Schaum's Outline Senes (1971), McGraw-

Hill, 259 pages

© 1987 Birkhauser Verlag, Basel 0013-6018/87/020032-04$ 1 50 + 0 20/0

Zur Abschätzung des Brocardschen Winkels, II

Für Definitionen und Bezeichnungen sei auf [1] verwiesen
In [1] wurde gezeigt, dass

und dass Gleichheit genau im gleichseitigen Fall besteht (GGG) Diese Note ist dem
Beweis der in [1] vermuteten Ungleichung

V Zl/a?
2 co (GGG) (2)

gewidmet (1) und (2) bedeuten schon eine sehr gute Abschätzung von co, wenn man
beachtet, dass vor zwanzig Jahren nur

7t

min(a!, a2, a3) __. 2 co __. — (GGG)

bekannt war Wir werden im Satz 3 die Frage nach der besten Abschätzung genauer
stellen
Der Beweis von (2) stutzt sich auf dieselbe Beweisidee wie (1) Dabei stosst man
aber auf viele neue technische Schwierigkeiten Nach zwei Lemmas werden wir
zunächst (2) auf den gleichschenkligen Fall reduzieren

Lemma 1: (1) Die Funktion f(x) cot x ist strikt konvex in (0, n)
(n) Es gilt x

1 x tgxcot X > — > — 1

x 3 3 + tg2 x
cot x > — > ^ t ^2— g (x)

furxeio,^-

(m) Die Funktion h(x) =1 1 (1 +2cos2*) ist strikt monoton wachsend

in (0,n) \sinx/
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Beweis: (i) Nach [1] (Lemma 2)
Insbesondere haben wir \ sin x)

cos x strikt monoton fallend in (0, it).

i x yi__ cosx
\sinx/

< 1

für x e (0, n) und somit

/"<*)-75 \smxj
cosx >0

(°4

für x e (0, n), d. h., / ist strikt konvex in (0, n).

(ii) Aus

entnimmt man, dass #(x) strikt konkav in (o, —J ist. (ii) folgt jetzt sofort aus /(0+)

9 (0+) 0, /'(0+) ^'(0+) 1/3, und aus (i).

(iii) Wegen

4x3
h'(x) [sinx (1 + 2cos2x) - x cosx (24-cos2x)l

sin^x

ist die Behauptung für x 6

äquivalent zu
—,7t] klar. Sei nun xe H\ Dann ist ä'(x)>0

tgx 2 + cos2x
__

tg2x

x l + 2cos2x 3 + tg2x

d. h. zu

1 tgxCOtX>- r—,x 3 + tg2x

was unter (ii) bewiesen ist.
Das folgende Lemma ist bekannt, sein Beweis wird aber der Vollständigkeit halber
aufgeführt:

Lemma 2: Für den Brocardschen Winkel oj gilt

esc2co Yl esc2«,.
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Beweis: Wegen cotco Yl cota, hat man zunächst

esc2co 1 + cot2co 1 4- (Yl cota,)2

Yl esc2ol, + 2UY1 cota,cotaA\ - ll.

Für {/, x,k} {1,2,3} ist aber

tga,H-tgaA
tgMgaA=l- * / *

tg(a, + aA)

und, wegen tg (a, 4- aA) - tg ax,

tgax

37

cota, cotaA
tga, + tgax+tgaA

d.h.

Yl cota, cota^= 1

Kk

und somit

esc2co Yl csc2a,.

Satz 1: Gilt Ungleichung (2) für alle gleichschenklige Dreiecke, dann gilt sie allgemein.

Beweis: Lemma 2 gibt Anlass zur Definition der Funktion

co := co (a!, a2, a3) := aresin

Wir setzen nun

Af_2 := M_2 (a!, a2, a3) := y

\^ sin2a, /

und wenden die Methode von Lagrange auf die Funktion

F(<xx, a2, a3) := 2 co - M_2.

an.
Die Nebenbedingung Yl <*, n führt dann zum Gleichungssystem

dF sin3co cosa, 1
3

1

—-=2 ri -Ml2-1=k, 1=1,2,3
oa, cosco snra, 3 af

YlXt^K-
(3)
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sin3 co 1

Es sei (ai,a2,a3,A) eine Lösung von (3); ferner sei A:=2 B:= — Ml2. Für
die Funktion cosco 3

„, x _
COSX __

1

f(x):=A-T-1--B-:J v sin3x x3

gilt offenbar /' (x) 0 genau dann, wenn

l^_=(_^)4(l + 2cos2x).
A \sinx/

Nach Lemma l.(iii) hat aber dies höchstens eine Lösung in (0,7r), d.h., f(x) k hat
höchstens zwei Lösungen in (0, n). Es folgt also, dass das System (3) nur von
gleichschenkligen Dreiecken lösbar ist, und dies beweist den Satz.

Die Aussage im gleichschenkligen Fall hängt vom folgenden Lemma ab, dessen

«brüte force» Beweis im Anhang zu finden ist:

Lemma 3: Die Gleichung

]/3 8(7r-x)3-x3 1 3 1

2 [8(tt-x)2 + x2]3/2
~

2 2 5 + 4cosx

hat genau drei Lösungen xx < x2 < x3 in (0, n)9 für die gilt

Tt 2n 3n
0 < xx < -r-; x2 —-; — < x3 < tt

2 3 4

Satz 2: (2) giltfür alle Dreiecke.

Beweis: Nach Satz 1 genügt es, gleichschenklige Dreiecke mit Winkeln a, a, 7i-2a

zu betrachten (a < — J. (2) nimmt dann die Form

1/3/2 1 \"1/2
o H+ 7 T^2 -^arcot(2cota-cot(2a))
2 \<xl (n-2oLy)

oder, nach der Substitution x := 2 a (0 < x < n),

x
V5 x(n-x) I sinx \

g xl(x) :=-V-r—— <> arctg I— =: r(x).v ; 2 [8(7r-x)24-x2]1/2 6\2 + cosx/
v '

Zu beachten ist, dass l(x) und r(x) auch bei x 0, n definiert sind. Die Gleichung,
die Gegenstand von Lemma 3 ist, ist nichts anderes als l'(x) r'(x): wir wissen somit,
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dass (r-1)' (x) 0 genau drei Lösungen in [0, n] hat, nämlich X!, x2, x3, wobei

n 2n 3n
0<xx< — ; x2 —; —-<x3<7t.2 3 4

Satz 2 ist also mit der Gültigkeit von l(x) ___r(x) an den Stellen x 0, —, -—, n
bewiesen.
Zum Schluss sei noch kurz auf die Frage nach der besten Abschätzung von co

eingegangen. Es steht fest, dass

M_2<2co<M_!.

Es wäre jetzt interessant zu wissen, wie man am besten 2 co durch Mittelwerte approximieren

kann. Der folgende Satz ist ein erster Schritt in dieser Richtung:

Satz 3: Ist r die kleinste und s die grosste positive reelle Zahl derart, dass

M_-_^2co^M_, (4)

dann gilt

log (4/3) log 2

Beweis: 1
___ s < r <, 2 folgt aus (4). Für zwei Funktionen / und g schreiben wir /___ g,

falls limf(e)/g(e) l.

Betrachtet man das Dreieck mit Winkeln e, —- e, —, so hat man

1/r

M_r(e) 3x/r\^+ t„l u + jJy7 1 -*3l/r-fi,' (H (C
i * \ l

cotco(e) cote + cot( — — el cot£ + tge __. —,

2 co (e) __- 2 arcotft-
Nach der Definition von r ist 31/r__;2, d.h. r^-—-. Die Ungleichung s ___-—77777

log2 5 6 log (4/3)
beweist man auf analoge Weise durch die Betrachtung des Dreiecks mit Winkeln
e, e, Tt — 2 e.

Anhang: Beweis von Lemma 3.
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Lemma4: Die Funktion d(x):=—~ 7 ist strikt monoton wachsend in IO,— I,sinx
x(7i~x)

In \
bzw. fallend in¦(M
Beweis: Wegen d(x) d(n—x) für x e (0, n) und

,_ v sinx / Tt— 2x
d'(x) — 7 cotx -X(7T~X) \ X(7T~X)

genügt es zu zeigen, dass

Tt— 2x I Tt\
cotx> — -, xe 0,—

x(7t-x) \ 2/

d.h.,

1 1

cotx < xe
x n-x (»•fl-

Dies folgt aber sofort aus der Konvexität von cotx (Lemma l.(i)) und von ;
X Tt — X

4 1

die Gerade y —zx ist Stützgerade von und verbindet die Punkte (0,0),
Tl1 Tt-X

(Mr d. h., sie liegt oberhalb cotx.
x

Lemma 5: Die Gleichung

5 87c-9x sinx
8 8(7i-x)2 + x2 ~

5 + 4cosxflW:=7 o/_ ..x2. v2 ~c. ,^,..=:fcW

ftey/tef gewaw eme Lösung in (0, fl) (nämlich x0 — 2.1250).

Beweis: Sei x e (0,7r). Wegen

5/8
a,w-[g(,-^xy(8l3c2-144'<+56*2)

2% rgilt a' (x) 0 genau für x =: y{ - — (4 - \2) 1.8052. Andererseits ist wegen

4+Soo.x
(5 4-4 cosx)2



EL Math, Vol. 42, 1987 41

b'(x) 0 genau für x=:y2 arcosl-—) 2.4981. a(x) (bzw. b(x)) nimmt bei yx

(bzw. bei y2) ein Maximum an. Wir stellen somit folgendes fest:

5
(i) a(0)= — >b(l.l) => a(x)>b(x) für 0<x___l.l.

8 7t

(ii) a(l.l)>b(yx) => a(x)>b(x) für 1.1 <1x<tyx.
(iii) a (x) fällt und b (x) wächst in (yx, y2). Wegen a (y2) < b (y2) gibt es dann genau

ein x0 € (yx,y2) mit a(x0) b(x0).

(iv) a(x)___0 für xe —-, it\. Wegen a(y2) < b[-—\ hat man schliesslich

a (x) < b (x) für y2 ___ x < n.

Lemma 6: Die Gleichung

(5+ 4 cosx)2
_

sinx
[8(tt-x)24-x2]5/2

~
x(ti-x)

i \ oi/i 2 p-i-qcosxr sinx
c(x):=2l/3 7i2rQ^ ,2m,i5/2 ^,_. ^ =:d(x)

besitzt genau zwei Lösungen in (0, n) (nämlich xx 1.6873 undx2 2.5412).

Beweis: Lemma4 besagt, dass d(x) monoton in (O,— und (—,n\ ist mit einem

n I ln\ 4\ \ ' \2 '
Maximum bei ~^~l<M~r) ==~l- ^s folgt, dass d(x) > l/n für alle x e (0, n). Wegen

Lemma 5 und

21/3 n2 (54- 4 cosx)
c'(*>= [l(n-x)2 + x*\™

{5(5 + 4cosx)(87i-9x)~8sinx[8(7r-x)2 + x2]}

folgern wir, dass c'(x) eine einzige Nullstelle in (0, n) hat (x0 — 2.1250), die offenbar
ein Maximum von c (x) ist. Es bestehen jetzt folgende Implikationen

(i) c(1.41)<— => c(x)<d(x) für 0<x_£l.41.
n

(ii) c(1.68)<</(1.41)<</(1.68) => c(x)<d(x) für 1.41 <_ x <; 1.68.

(iii) c (1.69) >d(1.69) => Es gibt ein x, e (1.68, 1.69) mit c(xx) d(xx).

Insbesondere gibt es genau ein solches xx in diesem Intervall, weil hier c (x) wächst und

d(x) fällt.

(iv) min(c(1.69),c(2.47))>4 => c(x)>d(x) für 1.69 <_x <_ 2.47.

(v) c(2.53) >d(2.47) >d(2.53) => c(x)>d(x) für 2.47 <_ x <_ 2.53.

(vi) c (2.55) < <7(2.55) => Es gibt ein x2 e (2.53,2.55) mit c (x2) d(x2).
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c(x) und d(x) sind in diesem Intervall beide fallend und wegen \d'(x) | < 0 1 < 0 4

< |c'(x) | fur x e (2 53, 2 55), wie man leicht sieht, ist ein solches x2 eindeutig
bestimmt

(vn) c(2 6)<c(2 55)<</(2 6) => c(x)<d(x) fur 2 55<_x^26
(vm) c(2 64)<c(2 6)<c7(2 64) => c(x)<d(x) fur 2 6<_x<264

(ix) c (2 64) < l/n => c(x) <d(x) fur 2 64 < x < n

Lemma 6 ist somit bewiesen

Beweis von Lemma 3: Um zu beweisen, dass

e(jc)-jj S(,-x)3-x3 .1,1 1

=/(x)W 2 [8(;r-x)2 + x2]3/2 2 2 5 + 4cosx /W

genau drei Losungen in (0, n) hat, genügt es zu zeigen, dass e' (x) /' (x) genau zwei
Losungen in (0,n) hat Da aber e'(x)=f'(x) zur Gleichung c(x) d(x) von
Lemma 6 äquivalent ist, ist Lemma 3 bewiesen

Nach Abfassung dieser Note wurde ich darauf aufmerksam gemacht, dass Stroeker
und Hoogland meine Ungleichungen (1) und (2) in [2] vermutet haben Sie haben
insbesondere auch versucht, die Vermutung numerisch glaubwürdig zu machen

V Mascioni, Math -Departement ETH-Zunch
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Didaktik und Elementarmathematik

Perfekte Dreiecke

Wir nennen ein Dreieck perfekt, wenn seine Seitenlangen a, b, c, sein Flächeninhalt A,
sein Inkreisradius g und seine Ankreisradien ga, gb, gc ganzzahlig sind und wenn a, b,

Cy Qy Qa, Qb und & teilerfremd sind Beispiele sind am Schluss dieser Studie aufgeführt
Wir geben im folgenden alle rechtwinkligen und alle gleichschenkligen perfekten
Dreiecke an Dann zeigen wir, dass es zu jedem g nur endlich viele perfekte Dreiecke
gibt, wovon fur g _> 2 je mindestens eines weder rechtwinklig noch gleichschenklig ist
Als nächstes beschreiben wir ein Verfahren, mit dem man zu gegebenem g alle perfekten

Dreiecke finden kann Schliesslich geben wir alle perfekten Dreiecke mit l__g__5
an
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