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Zur Abschitzung des Brocardschen Winkels, 11

Fiir Definitionen und Bezeichnungen sei auf [1] verwiesen.
In [1] wurde gezeigt, dass

3 1
> 1/a,’ O

und dass Gleichheit genau im gleichseitigen Fall besteht (GGG). Diese Note ist dem
Beweis der in [1] vermuteten Ungleichung

] [ 3
W <2w (GGG) 2)

gewidmet. (1) und (2) bedeuten schon eine sehr gute Abschitzung von @, wenn man
beachtet, dass vor zwanzig Jahren nur

2w<

min (e, oy, 43) < 2 @ < 13’— (GGG)

bekannt war. Wir werden im Satz 3 die Frage nach der besten Abschidtzung genauer
stellen.

Der Beweis von (2) stiitzt sich auf dieselbe Beweisidee wie (1). Dabei stosst man
aber auf viele neue technische Schwierigkeiten. Nach zwei Lemmas werden wir zu-
nachst (2) auf den gleichschenkligen Fall reduzieren.

1
Lemma 1: (i) Die Funktion f(x) := < cot x ist strikt konvex in (0, n).

(i) Es gilt
—L—cotx>—x—>———t—g—3c———-~—' (x)
x 37 3+tg’x 9

fiir x € (0, —72t—)

4
(iii) Die Funktion h(x) := (;—l—ll)-c-;—) (1 + 2 cos? x) ist strikt monoton wach-
send in (0, 7).
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Beweis: (i) Nach [1] (Lemma 2) ist ( d
Insbesondere haben wir Sin x

x \3
—] cosx < 1
sinx

2
) cos x strikt monoton fallend in (0, =).

fiir x € (0, 7) und somit
2 x \?
44 = —— 1 Y P 0
f”(x) x3[ (sinx) cosx] >

fiir x € (0, n), d.h., f ist strikt konvex in (0, n).

(i1) Aus
4sin (2x) n
” = 2 _ =1
9" ) = T cos @y SN~ <0, xe(O 2)
entnimmt man, dass g (x) strikt konkav in (0, -;—) ist. (ii) folgt jetzt sofort aus f(0%)

=g (0" =0, f'(0*) = g’(0*) = 1/3, und aus (i).
(iii) Wegen

3

h(x)= t.tx

+— [sinx (1 +2cos?x) — x cosx (2+ cos?x)]
sin®x

ist die Behauptung fiir x € [%, n) klar. Sei nun x € (0, —g—) Dann ist A'(x) >0
dquivalent zu

tgx _ 2+cos?x tg2x
X 1+2cos?x 3+tg?x
d.h. zu
tgx
—=—Ccotx > g 7>
X 3+tgtx

was unter (ii) bewiesen ist.
Das folgende Lemma ist bekannt, sein Beweis wird aber der Vollstindigkeit halber
aufgefiihrt:

Lemma 2: Fiir den Brocardschen Winkel w gilt

csc?w =, cscta, .

\
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Beweis: Wegen cotw = Y, cota, hat man zunichst
csc?w =1+ cot?w =1+ (, cota,)?

=D, esc?a, +2 [( > cota, cotal) - 1] .

1<A
Fiir {1,%, A} = {1, 2, 3} ist aber

tgo, +tga
tg (o, +0;)
und, wegen tg(a,+a;) = — tga,,

tg o,
tga, +tgo,+tgoy

cota, cota, =
d.h.

> cota, cota, = 1
1<i

und somit
csctw = Y cscta, .
Satz 1: Gilt Ungleichung (2) fiir alle gleichschenklige Dreiecke, dann gilt sie allgemein.

Beweis: Lemma 2 gibt Anlass zur Definition der Funktion

1 \-12
w = (o, 0,,03) ;= arcsin [(Z ) ] .

sin?a,

Wir setzen nun

3
M_;:=M_, (o), 0,03) 1=l/ S 1/a2
i

und wenden die Methode von Lagrange auf die Funktion

F(cx,,ocz,a3) Z=20)—M_2.

an.
Die Nebenbedingung D «, = 7 fithrt dann zum Gleichungssystem

. 3 1
6F=2sm ) c.os;x. ——M32-1—3=A, 1=1,2,3
Oa, cosw sin’a, 3 o

S .
1

3)



38 ~ El Math,, Vol. 42, 1987

.3
. . ) sin” @ 1 .
Es sei (a,a;,%3,4) eine Losung von (3); ferner sei A:=2 , B:=~3—M_32. Fiir
die Funktion cosw
coS X 1
x):=A -B—
/) sin®x x3

gilt offenbar f’(x) =0 genau dann, wenn

3B x \4
= iy 2 .
A (sinx) (1+2cos™x)

Nach Lemma 1.(iii) hat aber dies hochstens eine Losung in (0, n), d.h., f(x)=4 hat
hochstens zwei Losungen in (0, 7). Es folgt also, dass das System (3) nur von gleich-
schenkligen Dreiecken 16sbar ist, und dies beweist den Satz. -

Die Aussage im gleichschenkligen Fall hdngt vom folgenden Lemma ab, dessen
«brute force» Beweis im Anhang zu finden ist:

Lemma 3: Die Gleichung

3 8(n—x)-x3 1 3 1

2 [B(n—x)2+x3*2 2 2 S+4cosx

hat genau drei Losungen x;< x,< x3 in (0,n), fiir die gilt

4
0<x1<—é—; x2=—3—; —<x3<T7.

Satz 2: (2) gilt fiir alle Dreiecke.

Beweis: Nach Satz 1 geniigt es, gleichschenklige Dreiecke mit Winkeln a, o, 7—2a

zu betrachten (oz < E—). (2) nimmt dann die Form

2
) -1/2
—VS- (&3 + —(;——_—%—W) < arcot (2cota — cot (2a))

oder, nach der Substitution x :=2a (0 < x < n),

. V§ x(n—x)
)= Ba—xps 2

Zu beachten ist, dass /(x) und r(x) auch bei x = 0, # definiert sind. Die Gleichung,
die Gegenstand von Lemma 3 ist, ist nichts anderes als /” (x) = r’ (x): wir wissen somit,

\
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dass (r—/)’ (x) = 0 genau drei Losungen in [0, #] hat, ndmlich x;, x,, x3, wobei

O <X < _n_ . — ﬁ . ._3_75_ < <
1<575 %= 3 g <x<m.
. . res 1 n 3m
Satz 2 ist also mit der Giiltigkeit von /(x) < r(x) an den Stellen x =0, CLAE T

bewiesen.
Zum Schluss sei noch kurz auf die Frage nach der besten Abschitzung von w ein-
gegangen. Es steht fest, dass

M_2 <2w< M_] .

Es wire jetzt interessant zu wissen, wie man am besten 2 w durch Mittelwerte approxi-
mieren kann. Der folgende Satz ist ein erster Schritt in dieser Richtung:

Satz 3: Ist r die kleinste und s die grisste positive reelle Zahl derart, dass
M_,<2w<M_ )]

dann gilt

1<s< log (3/2) <log3srs2.
log(4/3) log2

Beweis: 1 <s < r < 2 folgt aus (4). Fiir zwei Funktionen f und g schreiben wir f~ g,
falls lirr%) f(e)/g(e) =1.

. S n n
Betrachtet man das Dreieck mit Winkeln ¢, 3 g, > so hat man

3 1/r

M (6‘)=3I/r _!..+
=-r g’ 1_ r _1 r -
2 ¢ \2
n 1
cota)(e)=oote+cot(—2——a)=cots+tgez—8—,

1
2w(e) ~ 2arcot(—8—) ~2¢.

- _ log3 . | log (3/2)
1/r —_— <
Nach der Definition von r ist 3'"<2, d.h. r= log 2 Die Ungleichung s log (473)

beweist man auf analoge Weise durch die Betrachtung des Dreiecks mit Winkeln
& & n—2e.

Anhang: Beweis von Lemma 3.
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Lemma 4: Die Funktion d(x):= ist strikt monoton wachsend in (O, %),

si
x (n—x)

bzw. fallend in (—;t—, n).

Beweis: Wegen d(x) =d (n— x) fiir x € (0, n) und

, .\ Sinx _ m—2x
R TemE (°°“‘ )

geniigt es zu zeigen, dass

n—2x n
cotx >————, x€el0,—],
x(n—x) ( )

d.h,

1 n
" xG(O,—z'-).

. : 1 . 1
Dies folgt aber sofort aus der Konvexitit von = cotx (Lemma 1.(i)) und von ;

1
——cotx <
X

4
die Gerade y=—n—2x ist Stiitzgerade von und verbindet die Punkte (0, 0),

n—X
2
(f-, ——), d.h., sie liegt oberhalb —— — cot x.
2 = X
Lemma S: Die Gleichung
a(x):=i 8n—9x sin x = b(x)

8 8(m—x)*+x? T S+4cosx

besitzt genau eine Losung in (0, ) (ndmlich xy= 2.1250).

Beweis: Sei x € (0,n). Wegen

5/8
[8 (m— x)%+ x?)2

a'(x) = (81x%— 1447 x + 56 n%)

. 2
gilt @’ (x) = 0 genau fiir x =: y, = -—;— (4—2) = 1.8052. Andererseits ist wegen

4+ 5cosx

b (x) =X
(x) (5+4cosx)?

5
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4
b’ (x) =0 genau fiir x =: y, = arcos (— ?) = 2.4981. a(x) (bzw. b(x)) nimmt bei y,

(bzw. bei y;) ein Maximum an. Wir stellen somit folgendes fest:

@) a(0)=-§§;>b(1.1) = a(x)>b(x) fir 0<x< Ll

(i) a(l.)>b() = a(x)>b(x) fir 1L1<x<y.

(i) a(x) fallt und b(x) wichst in (y, y,). Wegen a(y;) < b(y,) gibt es dann genau
ein xo € (y1,y2) mit a(xo) = b (xo).

8 8
(iv) a(x)<0 fir xe [_91, n). Wegen a(y;) <b (—575-) hat man schliesslich
a(x)<b(x) firy, <x<n
Lemma 6: Die Gleichung

(5+4cosx)>  sinx
[B(n—x)2+x?]?2  x(n—x)

c(x):=2)3n> =:d(x)
besitzt genau zwei Léosungen in (0, ) (ndmlich x, = 1.6873 und x, = 2.5412).

Beweis: Lemma 4 besagt, dass d(x) monoton in (0, -ﬂ) und (lzt-, n) ist mit einem

Maximum bei -g—(d (—g—) = —5). Es folgt, dass d(x) > 1/x fiir alle x € (0, 7). Wegen
n
Lemma S und
2V3 72 (5+4cosx)

d(x)=

8 (1—x)2+x2 2 {5(5+4cosx) (8n—9x)— 8sinx[8 (m—x)*+x?]}

folgern wir, dass ¢’ (x) eine einzige Nullstelle in (0, #) hat (xo = 2.1250), die offenbar
ein Maximum von ¢ (x) ist. Es bestehen jetzt folgende Implikationen

(1) c(1.41)<i = c(x)<d(x) fir 0<x<14l
n

(i) c(1.68) <d(1.41) <d(1.68) = c(x)<d(x) fir 1.41<x < 1.68.
(iii) ¢(1.69) > d(1.69) = Es gibt ein x, € (1.68, 1.69) mit ¢ (x;) = d(x}).

Insbesondere gibt es genau ein solches x; in diesem Intervall, weil hier ¢ (x) wéchst und
d(x) fallt.

(iv) min (c (1.69), c (2.47)) > % = c(x)>d(x) fir 1.69<x<247.

V) c(.53)>d(247)>d(2.53) = c(x)>d(x) fir 247 <x<253.
(vi) ¢(2.55)<d(2.55) = Es gibtein x, € (2.53,2.55) mit ¢ (x;) = d (xy).
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¢(x) und d(x) sind in diesem Intervall beide fallend und wegen |d’(x)| < 0.1 < 0.4
< |¢’(x)| fiir x € (2.53, 2.55), wie man leicht sieht, ist ein solches x, eindeutig be-
stimmt.

(vil) ¢c(2.6) <c(255)<d(26) = c(x)<d(x) fir 255<x<26.
(viii) c(2.64) <c(26)<d(264) = c(x)<d(x) fir 26<x<2.64.
(ix) c(264)<1/zm = c(x)<d(x) fir 264<x<nm

Lemma 6 ist somit bewiesen.

Beweis von Lemma 3: Um zu beweisen, dass

)3 — o3
e(x):=]/§ 8(n—x)’—x _

1 1
2 B(n—x)2+xP? 2

S+4cosx

3
iy =: f(x)
genau drei Losungen in (0, n) hat, geniigt es zu zeigen, dass e’ (x) = f’(x) genau zwei
Losungen in (0,7) hat. Da aber e'(x)=f"(x) zur Gleichung c(x)=d(x) von
Lemma 6 dquivalent ist, ist Lemma 3 bewiesen.

Nach Abfassung dieser Note wurde ich darauf aufmerksam gemacht, dass Stroeker
und Hoogland meine Ungleichungen (1) und (2) in [2] vermutet haben. Sie haben ins-
besondere auch versucht, die Vermutung numerisch glaubwiirdig zu machen.

V. Mascioni, Math.-Departement ETH-Ziirich
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Didaktik und Elementarmathematik

Perfekte Dreiecke

Wir nennen ein Dreieck perfekt, wenn seine Seitenldngen a, b, c, sein Flacheninhalt 4,
sein Inkreisradius ¢ und seine Ankreisradien g,, g, 0. ganzzahlig sind und wenn q, b,
¢, 0, 0z, 0p Und g, teilerfremd sind. Beispiele sind am Schluss dieser Studie aufgefiihrt.
Wir geben im folgenden alle rechtwinkligen und alle gleichschenkligen perfekten
Dreiecke an. Dann zeigen wir, dass es zu jedem @ nur endlich viele perfekte Dreiecke
gibt, wovon fiir ¢ = 2 je mindestens eines weder rechtwinklig noch gleichschenklig ist.
Als néchstes beschreiben wir ein Verfahren, mit dem man zu gegebenem g alle perfek-
ten Dreiecke finden kann. Schliesslich geben wir alle perfekten Dreiecke mit 1 <p <5
an.
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