Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 42 (1987)

Heft: 1

Artikel: Über einen Satz von F. Karteszi

Autor: Zeitler, H.

DOI: https://doi.org/10.5169/seals-40028

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

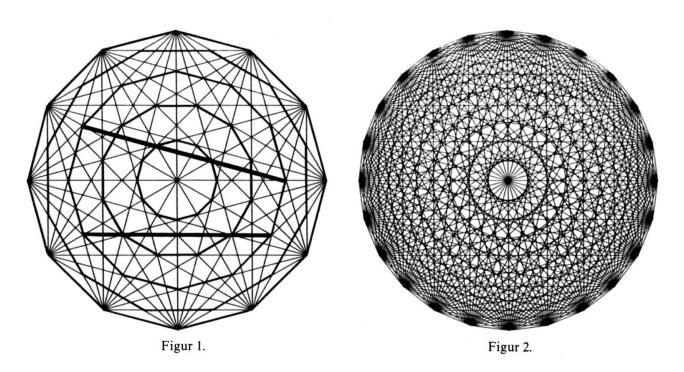
Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Über einen Satz von F. Karteszi

Einleitung

Eine beliebte Übungsaufgabe in der Schule ist es, Schülern alle $\binom{e}{2}$ Sehnen eines regulären e-Ecks zeichnen zu lassen. Aus dem Gewirr von Strecken kristallisieren sich dabei – vor allem bei zunehmender Eckenzahl – im Innern des Polygons weitere, kleinere reguläre e-Ecke heraus. Das so auf spielerische Weise entstehende «Tischdeckchenmuster» entbehrt nicht eines gewissen ästhetischen Reizes. Mit solchen regulären e-Ecken, innerhalb eines gegebenen Startpolygons, wollen wir uns hier beschäftigen. Die Figuren 1 und 2 zeigen die Situation für e = 12 und e = 24.



1. Reguläre Polygone Π_i

1.1. Das Startpolygon Π_1

Wir starten mit einem regulären e-Eck Π_1 , wobei $e \in \mathbb{N}$, e > 4. Der Mittelpunkt des Umkreises von Π_1 sei M, sein Radius r. Die Seiten $(s_1)_1$ dieses Polygons nennen wir 1-Sehnen von Π_1 . Für den zu $(s_1)_1$ gehörenden Mittelpunktswinkel 2φ gilt $2\varphi = \frac{2\pi}{e}$ und für den Abstand $(\varrho_1)_1$ einer solchen Sehne von M weiter $(\varrho_1)_1 = r\cos\varphi$.

1.2. i-Sehnen in Π_1

Wir sprechen von *i*-Sehnen $(s_i)_1$ in Π_1 , wenn für den zugehörigen Mittelpunktswinkel gilt $i \cdot 2\varphi = \frac{2\pi i}{e}$ mit $1 \le i < \frac{1}{2}e$.

16 El. Math., Vol. 42, 1987

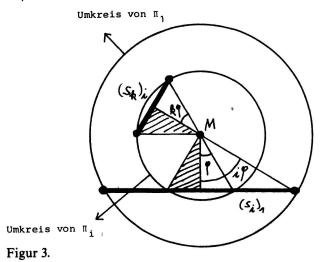
1.3. Das Polygon Π_i

Teile der *i*-Sehnen $(s_i)_1$ in Π_1 erzeugen ein reguläres *e*-Eck, das wir mit Π_i bezeichnen. Für den Abstand $(\varrho_i)_1$ einer Sehne $(s_i)_1$ von M gilt

$$(\varrho_i)_1 = r \cos i \cdot \varphi$$
.

Der Radius r_i des Umkreises von Π_i läßt sich der Figur 3 entnehmen. Wir erhalten

$$r_i = \frac{(\varrho_i)_1}{\cos \varphi} = r \frac{\cos i \cdot \varphi}{\cos \varphi} .$$



Wegen $1 \le i < \frac{1}{2}e$ gibt es, falls e ungerade, innerhalb von Π_1 insgesamt $[\frac{1}{2}e-1]$ solcher regulärer e-Ecke Π_i , sonst $\frac{1}{2}e-2$.

2. Der Satz von Karteszi

Prof. F. Karteszi, Budapest, teilte mir einen Satz über reguläre Polygone mit und forderte mich auf, einen elementargeometrischen Beweis dieses Satzes zu führen.

2.1. Der Satz

Jede k-Sehne in Π_i ist auch i-Sehne in Π_k .

Dabei gilt natürlich $i \neq k$. Die kleinere Sehne muß jeweils entsprechend verlängert werden.

In Figur 1 sind in Π_3 eine 5-Sehne und eine 4-Sehne eingezeichnet. Man erkennt, dass im ersten Fall eine 3-Sehne in Π_5 , im zweiten eine 3-Sehne in Π_4 vorliegt.

2.2. Berechnung von Streckenlängen

2.2.1. k-Sehnen in Π_i

Jetzt betrachten wir k-Sehnen $(s_k)_i$ in Π_i . Der zugehörige Mittelpunktswinkel beträgt $k \cdot 2\varphi$. Für den Abstand $(\varrho_k)_i$ dieser Sehnen $(s_k)_i$ erhalten wir mit Figur 3 sofort

$$(\varrho_k)_i = r_i \cdot \cos k \cdot \varphi \,,$$

El. Math., Vol. 42, 1987

also weiter
$$(\varrho_k)_i = \frac{r}{\cos \varphi} \cos k \cdot \varphi \cos i \cdot \varphi$$
.

2.2.2. *i*-Sehnen in Π_k

Ganz analog wie in 2.2.1 erhalten wir für den Abstand $(\varrho_i)_k$ der *i*-Sehne $(s_i)_k$ in Π_k von M

$$(\varrho_i)_k = \frac{r}{\cos \varphi} \cos i \cdot \varphi \cos k \cdot \varphi.$$

Aus 2.2.1 und 2.2.2 folgt

2.2.3. Hilfssatz

Die k-Sehnen in Π_i und die i-Sehnen in Π_k haben von M den gleichen Abstand.

2.3. Drehung der Polygone

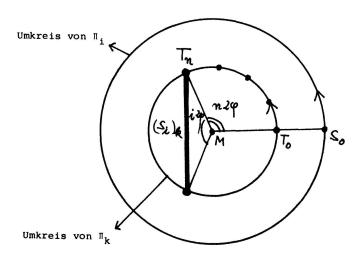
Polygone Π_i und Π_k , bei denen i und k verschiedene Parität haben, sind gegeneinander um den Winkel φ (mod 2φ), bei gleicher Parität um den Winkel O (mod 2φ) gedreht. Dabei ist M der Drehpunkt. Dies liegt daran, daß beim Übergang von einem Polygon zum nächstfolgenden stets eine Drehung um den Winkel φ erfolgt.

2.4. Berechnung von Winkelgrößen

O.B.d.A. sei i < k. Weiter sei S_0 ein Eckpunkt des Polygons Π_i und $(s_k)_i$ die von S_0 aus gegen den Uhrzeigersinn angetragene k-Sehne in Π_i .

Alle Winkel werden künftig von der Halbgeraden MS_0 in mathematisch positivem Sinn (gegen Uhrzeiger) gemessen.

Die Mittelsenkrechte zur genannten Sehne schliesst mit MS_0 den Winkel $k \cdot \varphi$ ein. Für das Weitere unterscheiden wir zwei Fälle.



Figur 4.

2.4.1. i, k haben gleiche Parität

Nach 2.3 sind die Polygone Π_i und Π_k – bis auf Vielfache von 2φ – gegeneinander nicht verdreht. Die Halbgerade MS_0 schneidet dann Π_k in einem Eckpunkt T_0 (Figur 4).

Jetzt suchen wir nach einer Sehne $(s_i)_k$, die zu der Sehne $(s_k)_i$ durch den Punkt S_0 parallel läuft, also dann wegen des Hilfssatzes 2.2.3 mit ihr zusammenfällt. Existiert sie? Wenn ja, wäre der Satz von Karteszi bewiesen.

Die gesuchte Sehne gehe durch einen Eckpunkt T_n des Polygons Π_k mit $\not < (S_0 M T_n) = n \cdot 2 \varphi$ und n > 0. Sie sei so gelegen, dass ihre Mittelsenkrechte mit MS_0 den Winkel $n \cdot 2 \varphi + i \cdot \varphi$ einschliesst. Im Falle $n \cdot 2 \varphi + i \cdot \varphi = k \cdot \varphi$, also für $n = \frac{1}{2}(k-i)$, sind die beiden Sehnen parallel. Weil i und k gleiche Parität haben, ist k-i durch 2 teilbar. Es gibt also eine geeignete Zahl $n \in \mathbb{N}$.

2.4.2. i, k haben verschiedene Parität

Nach 2.3 sind die Polygone Π_i und Π_k – bis auf Vielfache von 2φ – um den Winkel φ gegeneinander verdreht. Der Startpunkt T_0 auf Π_k liege jetzt so, dass die Halbgeraden MT_0 und MS_0 den Winkel φ einschliessen.

Wie in 2.4.1 suchen wir eine Sehne $(s_i)_k$, die zu der Sehne $(s_k)_i$ durch den Punkt S_0 parallel läuft.

Die gesuchte Sehne gehe durch einen Eckpunkt T_n des Polygons Π_k mit $\not < (S_0 M T_n)$ = $n \cdot 2\varphi + \varphi$ und $n \ge 0$. Sie sei so gelegen, dass ihre Mittelsenkrechte mit MS_0 den Winkel $n \cdot 2\varphi + \varphi + i \cdot \varphi$ einschliesst. Im Falle $n \cdot 2\varphi + \varphi + i \cdot \varphi = k \cdot \varphi$, also für $n = \frac{1}{2}(k-i-1)$, sind die beiden Sehnen parallel. Weil k und i verschiedene Parität haben, ist k-i-1 durch 2 teilbar. Es gibt also eine geeignete Zahl $n \in \mathbb{N}_0$.

Schluß

Es ist erstaunlich, dass es in der klassischen Elementargeometrie immer wieder neue Problemchen gibt, deren Lösung einfach Freude macht. Von einer Verkalkung dieser Disziplin, oder gar von ihrem Tod kann nicht gesprochen werden.

In Anlehnung an eine Äusserung von R. Thom stellen wir fest, dass der Versuch, die Elementargeometrie aus der Mathematik, vor allem aber aus der Schule zu eliminieren, ein gewaltiger pädagogischer Irrtum ist.

H. Zeitler, Math. Institut, Universität Bayreuth