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10 El. Math., Vol. 42, 1987
Some characterizations of complex normed Q-algebras

A complex normed algebra A with unit 1 is a normed vector space over € where a
multiplication 4 x A — A is defined such that

Ix-yh=lxllyl, foral x,yed,

where - denotes the multiplication and || | the norm on 4. With respect to this multi-
plication the unit 1 of 4 has of course the property 1- x=x'1=x for every x € 4.

The normed algebras we usually meet in the applications and in introductory func-
tional analysis courses are the so-called Banach algebras. These are normed algebras
such that the norm induces a complete topology (i.e. one such that Cauchy sequences
converge). '

Now, every second year mathematics student knows that the set of all invertible ele-
ments of a Banach algebra A4 is open (x € A is invertible if there is a y € 4 such that
x-y=y-x=1. In such case we write y=: x~L. The set of invertibles of 4 is denoted by
Inv (4)). The point is that the converse of this statement is false: just take a look at the
algebra R (D) of all complex rational functions defined on the closed unit disk of C,

endowed with the norm || g | :=sup|q(z)|. ¢ € R(D) is invertible if and only if it has
zeC

no zeros in D, and thus Inv (R (D)) is open in R (D), by the Maximum Principle. On
the other hand, R (D) is clearly no Banach algebra since there are analytic functions
on D which are not rational (e.g. sin (2)!).

Since the condition that Inv(4) be open has a well-mixed topological and algebraic
nature, it seems interesting to define Q-algebras (or open algebras, as they are some-
times called) as those algebras (with unit!) which satisfy it. Of course, all Banach
algebras are Q-algebras.

Our purpose is to show that almost all fundamental properties of Banach algebras are
shared by the larger class of normed Q-algebras. Quite surprisingly, it turns out that some
of these properties do actually characterize the normed Q-algebras among the normed
algebras with unit.

In the following 4 will be a complex normed algebra with unit 1 and norm | - |.

Fuster and Marquina [3] have proved the equivalence of the statements

(Q) Ais a Q-algebra
(Ormi) 30€(0,1):xedand | 1-x | <6 imply x € Inv(4)
(Qrmz2) 36€(0,1]: xeAdand || x| <8 imply that Y x" converges in A.

In an unpublished paper [4] Th. W. Palmer has given a further characterization:

(QOp) A is inverse-closed in its completion, that is, if A* is the completion of 4,
then Inv (4*) N4 < Inv (4).

Let’s now state our theorem:

\
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Theorem. Let A be a complex normed algebra with unit 1. Then the following conditions
are equivalent:

(Q) Aisa Q-algebra
(Q1)) If xeAd and |1-x| <1 then x € Inv(A4)
(Q2) If xed and | x| <1 then Y x" convergesin A

(Q3) r(x)=1lim | x"|V"=inf || x"|" forall xeA

(Q4) mg 1 r(x) < oo

(Qy) r(x)=|x| forall xeA

(Qs) 0dlnv(4) =« TDZ(A)

(Qs) Rad(A) is closed and A/Rad (A) is a Q-algebra
(Q7) 0:4- P(C), x> Sp(x) is upper semicontinuous
(Q%) o is upper semicontinuous at 0 € A

(Qg) D: x v diam (Sp(x)) is upper semicontinuous

(Q8) DiscontinuousatQ € A.

Remarks on notation: 1. TDZ (4) in (Qs) is the set of topological divisors of zero in A.
Recall that x is in TDZ (4) if there is a sequence (w,) in 4 with |w,| =1 for all n,
and such that limw,x = 0 = limx w, (see [2], p. 12).

2. Rad (4) is defined as the intersection of all maximal left ideals in A4 (see [2], p. 124).
Rad stands for radical.

3. If xeA, then Sp(x):={Ae@C:11—-x¢Inv(4)} is the spectrum of x (in A).
r(x):=sup{|i|: A € Sp(x)} is the spectral radius of x.

4. If K is a subset of 4, 0K is the boundary of K in A, i.e. 0K = K\K, where K is the
closure of K and X is the set of its inner points.

5. Upper semicontinuous in (Q;) means that, for each x € 4 and each open subset U of
C such that Sp(x) = U, thereisa 6 >0 with | y—x | <d= Sp(y) = U.

Proof:
(@) = (Qrmi): This is trivial since if Inv (4) is open then 1 is an inner point of Inv (4),
that is, there exists a § >0 with {y: | 1—y | <8} = Inv(A4). Since 0 ¢ Inv (4), clearly
o=1.

I

(Orm1) = (Q4): Let 6€(0,1] be as in (Qpm1)- We have r(x) éT for all xeA,
hence sup r(x) = 1/6.

fxll=1
(Q4) = (0Q3): The formulas r(a) = lim | a"||'/"= inf | a"||'/" and Sp (a) # @ are true in

all complex normed algebras (see [2], Prop. 2.8 and Th. 5.7). It remains to prove that
r(x) = lim | x"|"* for all x € A. Since Sp (¢ (x)) = ¢(Sp (x)) for all nonconstant poly-
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nomials g ([2], Prop. 5.5), we have, forn e N,
r)"=rxn=M-|x"|,

where 0 < M := sup r(y) < c. Now it follows immediately that
Iyi=1

r(x) = im MY | x" | V"= lim || x"||'/".

(Q3) = (Q):r(x)=inf | x"|V"= | x|, forall x € 4.

(04 = (Q)): Let xed and ||1—x| <1. Then r(1—x) <1, that is, 1¢ Sp(1—x),
hence x =1— (1 — x) € Inv (A4).

N
(Q1) = (Q2): (see [3]). Let (Q;) hold and let | x| < 1. Define sy:= >, x" for all

n=90

N =0 (x%:=1). By (Q)), 1 — x is invertible. Let y := (1 — x)~1. We have then

lsv=yl=lyA=x)sy=y =]yl |(Q=x)sy—1]
=yl Ix¥* =]yl x|V
Since || x | <1, we get l}vm sy=J, thatis, D x" converges.

(Q2) = (Q1): Let xeAd and |1—x|<1. It follows from (Q,) that Y (1—x)"
converges to some y € 4. Now, since

N N
= ” 1+(1-x) >, (1—-x)"= >, (1—-x)"

n=0 n=0

N
“ 1—x Y, (1-x)"
n=0

=] A-0¥* =] 1-x |V,

we get x y = 1. Similarly, y x = 1 and thus x is invertible.

(Q1) = (Q): Let x be invertible, and let y € 4 with | x—y | <1/| x!|. This implies
[T=x7'yl=lx"(x-» <1,

that is, x~'y is invertible, by (Q)). Let w:= (x~'y)~L It is clear that (wx™!) y=1, and
thus y is left invertible. Analogously we prove that yx~! is invertible and, with
z:=(yx 17!, we have y(x~'z)=1. Since y is left and right invertible, y must be in-
vertible. This proves that Inv (4) is open.

For completeness’ sake we prove

(Q) = (Qp): Let x € A N Inv (4*), x~! € A*\A, where A* is the completion of 4. If we
had x € dInv(4), there would exist (x,) € Inv (4)"N such lim x,= x. Since lim x;'=x""

in A*, we would have in particular that M:=sup | x;'| < co. Taking n sufficiently
n
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large, we would get M-|x—x,| <1 and x=x,(1+x;'(x—x,)) € Inv(4), by
(Q) < (Q)): a contradiction. Hence x ¢ dInv (A4).

Since Inv(4*) is open in 4*, we get thus a neighbourhood U of x in 4* such that
U < Inv (4*) and U N Inv (4) = 0. Since a ~ a~! is a homeomorphism in 4* ([2], Prop.
2.6), we have that U~! is open in 4* and U~! n 4 = @, which contradicts the denseness
of 4 in A*.

(Q) = (Qs): Let x €4 N dInv (4), (x,) € Inv(4)N such that lim x, = x. We claim that

sup | x;' | = oo. In fact, if we assume that | x;' | = N < oo for all n, we have

| xa! = xat | = X3 Gen—Xm) X3 | S NP | Xp— x| -

It follows that (x;') is a Cauchy sequence in 4 (say, with limit y e A4* A* the
completion of A4). Then xy=yx=1 by continuity of multiplication and thus
x € Inv(4*). By (Qp) <= (Q), x € Inv (4), which is a contradiction.
Without loss of generality let also | x;'| = n, for all n, and define w,:=x;'/| x;!|.
It is now easy to see that lim x w, = lim w, x = 0, that is, x € TDZ (4).

n n

(Qs) = (Q): If 4 were not a Q-algebra, there would exist x € Inv (4) N dInv (4). Since
x € Inv (4), x cannot be in TDZ (A4), contradicting (Q5).

(Q) = (Qp): If 4 is a Q-algebra, then maximal left ideals are closed. This is an easy
consequence of J < A\Inv (A4) for every proper left ideal J. It is also an easy task to
prove that A/ is a Q-algebra for every ideal I.

(Q¢) = (Q3): We have that
Rad(4)={x:1—xyeInv(4) and 1 — yx € Inv (4) for all y € 4}

([2], Prop. 24.16, Cor. 24.17). Using this result, we may follow Aupetit ([1], Lemme
1,1.2) to obtain

Sp (x) =Sp (%)

for all x € 4, where £ denotes the class of x in 4/Rad (4). Let x € A. Since A/Rad (4)
is a Q-algebra, (Q) < (Q3) gives

1/n

xn

r(£) = lim
and thus

lim | x"| " = r(x) = lim | £" " = Tim | x" |7,

which was to be proved (the first inequality follows from the general theorem already
quoted in the proof of (Q4) = (Q3)).
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(Q) = (Q1): Let ¢ be not upper continuous at x € 4. Choose U open in € such that
Sp(x) = U and (x,) € AN, (a,) € €N such that limx,=x, a,€ Sp (x,)\U. Since (by
(Q) <= (Q2) "

sup |, | = sup r(x,) = sup | x, |,
we ma:y assume tl’;at the x, arg chosen in such a way that (a,) converges. Let o:= li:n -
Then a ¢ U and since «, 1 — x, ¢ Inv (4) for all n, and since a1 —x = linm ol —x,, we
have that « ¢ Sp(x) and a 1 — x € Inv (4) N dInv (4), a contradiction with (Q).

(@7) = (Q%) = (Q3) and (Q7) = (Qs) = (Q%) are clear.

(Q%) = (Q): Choose 6 > 0 such that || x|| < é implies Sp (x) = U,,,(0). It follows that
0¢Sp(1—x)=1-Sp(x), thatis, 1 —x € Inv (4). (Q) <= (Q,) now does the rest.

Remarks: 1. As regards Palmer’s characterization (Qp), the implication (Qp) = (Q)
is very easy to prove: if x €4 and | 1—x || < 1, then x € Inv (4*), since A* is a Banach
algebra, but this implies x € Inv (4) by (Qp).

2. I believe that our Theorem may sufficiently increase the popularity of normed
Q-algebras. It is now clear that lots of elementary results about Banach algebras are
true for Q-algebras, too: it is unfortunate that they are usually confusingly proved
under completeness assumptions (see, for instance, [5], Chapter 18).

3. Our Theorem clearly has many applications. One may use the standard Banach-
algebra-proofs to obtain, for instance, the following “Gelfand-Theorems”:

Theorem (*): Commutative complex normed Q-algebras are exactly those A, for which
there exist a compact space K and an isomorphism ¢ of A/Rad (A) onto a full subalgebra
of C(K), which is separating in C (K) and contains 1.

Theorem (**): Commutative Q*-algebras (defined analogously to C*-algebras) are the
full dense subalgebras of C(K) which are separating and contain 1k, for a certain
compact space K.

(Recall that a subalgebra B of A is full if B contains the unity of 4 and if, whenever
b € B has an inverse b™! in 4, b7! is in B. A subalgebra of C (K) is separating if, given
points p and g in K, there is an f in 4 with f(p) # f(q).) It is a very useful exercise to
prove these theorems!

Vania Mascioni, Mathematik-Departement, ETH Ziirich

REFERENCES

—

B. Aupetit: Propriétés spectrales des algébres de Banach, LNM 735. Springer-Verlag, Berlin 1979.

F. F. Bonsall and J. Duncan: Complete normed algebras. Springer-Verlag, Berlin 1973.

R. Fuster and A. Marquina: Geometric series in incomplete normed algebras. Am. Math. Monthly 9/,
49-51 (1984).

Th. W. Palmer: Spectral algebras, subalgebras and pseudo-norms. To appear.

W. Rudin: Real and complex analysis. McGraw-Hill, New York 1974.

w N

S

\



	Some characterizations of complex normed Q-algebras

