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An elementary proof of the Theorem
of Beckman and Quarles

1. I have been asked by colleagues to write down that proof of the fundamental and
classical Theorem of Beckman, Quarles [1] that I have presented in a beginners course
on Geometric Transformations for students already familiar with the basic methods
of Linear Algebra. The proof in question, which is already sketched in a more general
context in [2], is a mixture of ideas of Beckman, Quarles [1], Schréder [5], Benz [2] up
to some new details. In this connection we also refer to Parhomenko and Modenov [4]
and to their proof of the Theorem in question.

Let R” (1 < n < o0) be equipped with the usual scalar product

n

ab:= Z aiﬂ,

i=1

fora=(a,...,a,) e R"and b=(py,..., B, € R".
Then

la—b]:=V(@a~b)?

is called the distance of @, b € R".
Theorem of Beckman and Quarles: Suppose k > 0 to be a fixed real number and
suppose fto be a mapping of R” (1 < n < 00) into itself such that

lp—ql =k implies | f(p)—f(g)| =k

for all p, g € R”. Then f'is an isometry of R" and hence a bijective linear mapping up
to a translation.

In section2 we shall collect some simple facts which are useful later on. Those
elementary facts could be presented in a course far ahead the proof of the theorem in
question, possibly in the form of exercises for the students.

The proof itself will be given in sections 3 and 4. It might be noticed that the original
theorem in [1] was formulated for multivalued transformations f. This is however no
substantial generalization as was pointed out in [3] in the case of Lorentz transforma-
tions of R".

2. Throughout this note exactly the elements of R” (1 < n < o0) are called points.
1) Suppose that a, m, b are points such that

Im—a|=|b-m|=3]|b-al.
Thenm =} (a + b).

Proof: Putting o:=|m—al, a:=m—a, b¥:=b—m we have (b—a)’+(a’— b')?
=(a’ + V)% +(a’ — b')*= 4 g% and hence (a’ — ¥')?= 0.
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2) A set of n distinct points of R” which are pairwise of distance f > 0 will be called a
B-set. Suppose that a, f are positive real numbers with

y(a, B) :=4a2—2,82(1—%)>0

and suppose that P is a f-set. Then there exist exactly two distinct points in IR” which
have distance a from all p € P. Those two points will be called the a-associated

points of P. Their distance is }y(a, ).

Proof: a) Let P={p,,...,p,} be a B-set. Then for i,j € {1,2,...,n— 1} with i +j we
have

(pi—pw) (pj—pa) =3 B2,

, B
b f B*=(pi—p)?=(pi=ps)—(p;—pn))% Defi A=
ecause of f°=(pi—p)*=((pi—pn)—(p;—pn))*. De slf_lfl’ 270+ D

r=1,2,... and ey,...,e,_; by (1 +5) A;e;:=(p;—py) — 2. Ave, for s=1,...,n—1.
r=1

for

Obviously, ef = 1. We now prove

for

1 i=j<n-—1
e. , ==
=0 i<j<n-—1

by induction along the sequence
(1,1),(1,2), (2,2), (1,3), (2,3), 3,3),...,(n—=1,n—1) for (i, j):

Step (i, i) = (1,i+ 1): Here we have

%ﬂz‘-’(Pl = Pn) (Pix1—Pn) = 21191(2 Are,+(2+10) Ai em)

=221+2Q+ D) A A1 erein,

1

and hence e ¢;,) = 0, because of 3 2 =2 A{.
Step (i — 1,j) = (i,j) in case i < j: Here we have

i-1 j-1
'lfﬁz——-(Pi“”Pn) (pj~pn)=(2 Arer+ (1 +10) /L-ei)(Zl Arer+(1+)) lfe!')
i-1 r=t ”

=2 A2+ +)A+A+)A+) Aidee,

r=1
i—1

and hence ¢, e; = 0, because of % B2=> A2+ (1+1i) A? by observing

r=1
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Step (i — 1, i) = (i, i): We finally have

i-1 2 i-1
2=(pi—pn)2=(lelre,"'(l"‘l.)liei =Z A%+(1+l)2i%e%,

r= r=1

and hence e?= 1.
b) Suppose now that g € R” has distance « from all p; € P. This implies

(q—Pn) (ps—pa) =3 p* forall s=1,...,n—1,

because of a”=(q — ps)*=((¢ =~ Pn) = (ps = Pn))*
Put g—p,:= D, u,e, 1, € R, by extending {ey, ..., e,_,} of part a) to an orthonormal

r=1

basis {e,, ..., e,} of R". We get the equation

s—1

%ﬂz_':(q—'pn) (ps—pn) = Zlﬂrlr'}'(l +S)/‘slls for s=1,...,n—1.

The case s =1 leads to u; = 4;, and having already y;=A; forie {l1,...,s—1},s<n,
we also get 4, = A, by comparing the equation above with

s—1
1p2=3 2+1+s) 12
r=1

n—1

Hence g —p,= D A e, + uye,. Now (g — p,)*= a? leads to

r=1

n—1 2
I
pr=o— 3 13=a2—§-(1--—)=
n

There are exactly two solutions g, namely the points

n—1

qi=pn+ Zl et LYy B) - en i=1,2,

which are in fact of distance a from all p € P. Obviously, (g; — ¢2)* = y (%, f).

3) Again suppose that o, § are positive real numbers with y(a, ) >0. Let x, y be
points of distance }y(x,B). Then there exists a f-set P such that x, y are the a-
associated points of P.

y—x

V(. B)

R" If p, is an arbitrary point of R”, then P = {p,, ..., p,} with

Proof: Define e, := and extend {e,} to an orthonormal basis {e;, ..., e,} of

s—1

Ps—Pni= 2. Are,+ (1+5) A,e, for s=1,...,n—1
r=1|
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is a ff-set by using the earlier defined A,. If we now take the special point

n—1

x+y
Pn= 5 _'zlrer,
r=1

then the a-associated points of P are given by (see part b) of 2))

n—1

x+y  y=x |y

qizpn+2)“rer+% y(a,ﬂ)en= + ={ .
r=1 2 2 X

3. Proposition: Let o > 0 be a fixed real number and let N >2 be a fixed integer.
Suppose that f: R” = R" (1 < n < o0) is a mapping such that

®) |x—y|=cimplies | f(x)—f(» | <o,
B |x—y|=Neimplies | f(x)—-f(»)|=Ne

for all x, ye R". Then | x—-y | = | f(x)—f(») | holds true for all x, y € R".

Proof: a) Distances ¢ and 29 are preserved under f: Having points x, y with
|x—y|=¢ define z:=2y—x and having points x, z with |x—z| =20 define
y:i=3(x+2). Put p;:=x+4(z—x) for 1=0,1,...,N. Observe | f(po)—f(py)|=No
and | f(p))—f(pi+1) | <@ for A=0,1,...,N—1 because of | py—py|=Neg and
| pi—pi+1 | = 0. The triangle inequality yields

N-1
No=|f(po)—fem) | < | f(Po)—f(p2) | + 12_32 1 f(p)—f(Pas) | <
N-1

< }éo lf(p)=f(pis1)| <Ng

and hence | f(p))—f(pi+1) | = (4=0,1,...,N—1) and

Lf(Po)—f () | = f ()= f(PD) | + | f(P))—f (P | -

Because of py=x, p)=y, p,=2z we thus have

| f)=f@) ] =2¢ and |fx)-f)]|=e.

b) Suppose that | x—y | = for x, y € R™. Then

Sx+A(y=x)) = f(x)+A(f(¥) S (x) )

holds true for all 1=0,1,2,...: Put p;:=x+A(y—x) for A=0,1,2,... and observe

I Pa—pi-il =e=|pis1i—pil and | pii—paoi| =2e
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for A=1,2,... Since distances g and 2 g are preserved we get

o=/ —f i) | =1 fPas) =S @D | =% | f(Pax1) = f(Pa=1) |

and hence (compare 1) in section 2) f(py) =5[f(pi-1) +f(pa+1)]. This proves (1) by
induction since (1) is trivial in cases A=0and A=1.

. A
c) Let A, u be positive integers and suppose that | x—y| = TQ for x,ye R™ Then
A
lf)—fO) = —;Q— holds true: Because of n>1 and 219> | x—y| there exists a
point ze€ R” with | z—x | =A¢=| z— y||. With such a fixed z define a, b by

x=z+A(a-z), y=z+i(b—2) 2
and put
"=z4+pu(@a-z), y=z+ub-2). 3)

Since ||a—z|=0=]| b—2z| we hence have the corresponding formulas to (2), (3) for
the images because of b). Now

|x' =yl =e=1f&)=fON | =plf@-f®)]

and

A
If@=fO) =21 f@-f®) | imply |f)-f )| ==2.

d) Let r,s be positive rational numbers and let x,y be points such that
ro<|x—y| <so Then ro<|f(x)—f(»)|| <so: Since n>1 and s> |x—y|

there exists a point z with |z—x | =-%Q—= |z—y]|l. Now c) implies || f(z)—f(x) |

=‘§'2'Q"= |f@=f(» ] and hence |f(x)—fM|=[f)-f@|+|f@-fO]
=50.
Put w:=x+ ” xS_Qy " (y—x) and observe | w—x | =s g and

wrl=(22=1) Iy=xl =se Iy-x1 < 6-ne.

Hence | f(w)—f(x)| =so by c) and | f(w)—f(») | < (s—r) o by the already proved
part of d). This implies

I fE) -2 1 fE=fW =1/ -fW] =se-(s—ne=re.
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4. Throughout this section let £ > 0 be a fixed real number and f be a mapping of
R" (1 <n < o0) into itself such that distance k is preserved under f; i.e. | x—y| =k
implies || f(x)—f(y) | =k forall x, y € R".

Lemma: Suppose that a, f are positive real numbers such that y(a, #) >0 (compare
section 2). Suppose moreover that f preserves distances a and A and that x, y are

points with |x—y | =e&:=Vy(a,B). Then | f(x)—f(») | € {0,¢} and in case 2¢ > a
we even have | f(x)—f(p) | = e

Proof: This is trivial for ¢= o since distance o is preserved. So assume & # a. Let P be
a f-set such that x, y are the a-associated points of P (compare 3) of section 2). It is
P’:= f(P) also a f-set since distance f is preserved. If we denote the wa-associated
points of P’ by x’,y" we get f(x), f(y) € {x’,y’} since distance o is also preserved
under f and since the x-associated points of P’ are uniquely determined. This implies
[ f)—f() ] €{0,|x’—y" |} ={0,&} according to 2) in section2. Assume now
2e>o. We have to show that f(x)=# f(y). Assume f(x)= f(») and take a ze R”"
with |z—x|=¢ and |y—z| =a which exists since n>1 and 2¢>a. The already
proved part of the lemma yields | f(x)—f()| € {0,¢}, i.e. |f(»)—f(2)]| € {0,¢}

because of f(x)=f(y). Hence a=|y—z|=|f()—f()]| € {0,&}. This contradicts
eFxa>0.

We note the following three consequences of our Lemma:

'l / 1
a) Putting o= k = f we realize that distance Jy(a,8) =k |/ 2 (1 + —n-) is preserved.

] / 1 2k
b) Putting a=g=k |/ 2 (1 + 7) we realize that distance Vy(a,f)=(n+1) "

is preserved.

c) Put a=k and B=k l/ 2(l+—’11—). Then |x—y|= Vy(a,ﬁ)=2’—;c~ implies
2k 2k
7@-r0 1 efo. 25, e 1@ -ro)1 <25 for al xye e

2k . .. . -
If we now take g :=—— in the Proposition of section 3 and N :=n+1 we realize that
n

f is an isometry according to ¢), b) and n > 1.

Walter Benz, Math. Seminar, Universitit Hamburg
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