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An elementary proof ofthe Theorem
of Beckman and Quarles

1. I have been asked by colleagues to write down that proof of the fundamental and
classical Theorem of Beckman, Quarles [1] that I have presented in a beginners course
on Geometrie Transformations for students already familiär with the basic methods
of Linear Algebra. The proof in question, which is already sketched in a more general
context in [2], is a mixture of ideas of Beckman, Quarles [1], Schröder [5], Benz [2] up
to some new details. In this connection we also refer to Parhomenko and Modenov [4]
and to their proof ofthe Theorem in question.
Let IR" (1 < n < oo) be equipped with the usual scalar product

n

ab:= Yl octßt

fora (a,,...,aw) e RM and b (ßx, ...,ß„) e RM.

Then

la-bl^YJa^2
is called the distance of a, b e Rn.
Theorem of Beckman and Quarles: Suppose k > 0 to be a fixed real number and

suppose/to be a mapping of Rw (1 < n < oo) into itself such that

\\p - q \\=k implies \\f(p) -f(q) \\ =k

for all p, q e Rw. Then/is an isometry of R" and hence a bijeetive linear mapping up
to a translation.
In section 2 we shall collect some simple facts which are useful later on. Those

elementary facts could be presented in a course far ahead the proof of the theorem in
question, possibly in the form of exercises for the students.
The proof itself will be given in sections 3 and 4. It might be noticed that the original
theorem in [1] was formulated for multivalued transformations/ This is however no
substantial generalization as was pointed out in [3] in the case of Lorentz transformations

ofR".

2. Throughout this note exactly the elements of R"(l < n < oo) are called points.
1) Suppose that a, m, b are points such that

«m-a|| ||_-m||-4||_-„||.

Then m {(a + b).

Proof: Putting q:- \\m-a\\9 a':=m-a, b':-b-m we have (b-a)2 + (a'- b')2

(a' + b')1 + (d - V)1 ~4q2 and hence (a' - b')2« 0.
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2) A set of n distinct points of R" which are pairwise of distance ß > 0 will be called a
/?-set. Suppose that a, ß are positive real numbers with

y(öi,ß):=4oL2-2ß2{l-—)>0

and suppose that P is a /?-set. Then there exist exactly two distinct points in R" which
have distance a from all p e P. Those two points will be called the a-associated
points of P. Their distance is j/y(a, ß).

Proof: a) Let P ={px,..., p„} be a /?-set. Then for i,j e {1, 2,..., n - 1} with / +j we
have

(P,-Pn)(Pj-Pn) lß\
o

because of ß2=(pl-pJ)2 ((pl-p„)-(pJ-pn))2. Define kr:= ==¦ for
5-1 V2r(r+1)

r= 1,2,... and ex,...,en-\ by (1 + s) kses:=(ps-p„)- Yl Ker for s= l,...,n- 1.

r=l
Obviously, e2 1. We now prove

(1 i=7<_*-1
*< */ i „ for7 IO i<j<n- 1

by induction along the sequence

(1,1),(1,2),(2,2),(1,3),(2,3),(3,3),...,(«-1,«-1) for (1,7):

Step (/, 0 -» (1, i + 1): Here we have

lß2=(P\~Pn)(pl+\-Pn) 2kxex[ Yl krer + (2 + i)kl+xel+

9 „?

?1 S ^r"\r=-l

2 Af +2 (2 + 0Mi+i*_ei+i,

and hence ej e,+ 1 0, because of\ ß2 2 k2.

Step (i - 1,7) -» (1,7) in case i <j: Here we have

lA2=(A-JPn)(^-^) (S Ker + (l + i) kie]{^krer + (l +j) kje]

Yl A2 + (l+0A2 + (l+0(l+7)M^.,
r=l i-l

and hence e, e, 0, because of \ ß2 Yl tf + (1 + 0 tf by observing

„2_£(±__!_\
r__l
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Step (i - 1, 0 -» (i, 0: We finally have

ß2-(pl~Pn)2 [Yl krer + (l+i)kte\ =Y1 k2 + (l + i)2k2e2,
\r=l / r=l

and hence e2= 1.

b) Suppose now that gel" has distance q from all ps e P. This implies

(q-Pn)(Ps-Pn)=lß2 for all 5=1,...,»- 1,

because of u2 (q -ps)2 ((q-pn)- (ps-pn))2.
n

Put q-pn:= Yl Pr^r,pre R, by extending {ex,..., en_. x} of part a) to an orthonormal
r=l

basis {ex,..., e„] of R". We get the equation

5-1
lß2~(q-Pn)(Ps-Pn)= Yl prkr + (l+s)psks for s=l,...,n- 1.

r__l

The case 5 1 leads to px kx, and having already Pi= kt forie {1,..., s — 1}, s < n9

we also get ps ks by comparing the equation above with

5-1

_£2-I tf + (l+*)A?.
r=l

n-1
Hence q-pn= Yl Ker + Pnen- Now (q - pn)2 a2 leads to

r=l

rf__-£V_-£(,-JL).i.,hÄ.
There are exactly two Solutions q, namely the points

n-l
?,=Pn + E krer±±)/y(<x,ß)-en, i — 1,2,

r»l

which are in fact of distance a from all/? 6 P. Obviously, (q{ - q2)2 y(a, /?).

3) Again suppose that q, /? are positive real numbers with y (a, ß) > 0. Let jc, v be

points of distance ]/y(a9ß). Then there exists a /?-set P such that x, y are the a-
associated points of P.

y — x
Proof: Define en := and extend {e„} to an orthonormal basis {ex,..., en} of

Vy(a,^)
R". If/?„ is an arbitrary point of R", then P {/>,,..., />„} with

--i
Ps-Pn'= S Arer+(l + s)A5^ for _? l,...,w-l

r«_l
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is a /?-set by using the earlier defined kr. If we now take the special point

x+y V„Pn'=—z 2^Ker,
z r=X

then the a-associated points of P are given by (see part b) of 2))

n-l

r=_l l l {

3. Proposition: Let g > 0 be a fixed real number and let _V > 2 be a fixed integer.
Suppose that/: R" -? R" (1 < n < oo) is a mapping such that

a) II * - .Hl G implies || f(x) - f(y) || <_ e,

ß) || x-y I _V(> implies \\f(x)-f(y) \\=Nq

for all x, y e R". Then || x-y\\ \\ f(x) -f(y) || holds true for all x9ye R".

Proof: a) Distances g and 2 g are preserved under /: Having points x, y with
ll*~.HI=(_ define z:=2y-x and having points x9 z with ||x-z|=2@ define

y:=\(x + z). Vutpk:=x + \(z-x) for k 09l,...,N. Observe \\f(Po)~f(PN)\\=Ng
and \\f(Px)-f(Px+\)\\ ^Q for k 0, l,...,N-1 because of \\p0-pN\\=Ng and
I Px~Px+\ 1 — g. The triangle inequality yields

N-\
NQ= \\f(Po)-f(PN) I ^ ||/(P0)~/(P2) « + S \\f(Px)~f(Px+x) II ^

*-l
* I ll/(PA)-/(PA+l)ll-^iVC

A 0

and hence \\f(Px)-f(Px+i) II <? (A 0, l,...,iV-1) and

ll/(PoW(P2) II \\f(Po)~f(Pi) II + \\f(Pi)~f(Pi) II

Because of p0 x, px y, p2 z we thus have

|/(*)-/(z)||=2e and I/(*)-/O0|-e.
b) Suppose that \\x-y\\=gfor x,ye R". Then

/(x + A(7-x))=/(x) + A(/(j)-/(x)) (1)

holds true for all k 0,1,2,...: Put px:=x + k(y-x) for A 0,1,2,... and observe

\\px~Px-\W G Ipa+i-^II and ||/?A+!-/?A_, || 2g
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for k 1,2,... Since distances g and 2 g are preserved we get

£>= \\f(Px)-f(Px-i) II \\f(Px+i)-f(Px) II =i I/(Pa+i)-/(Pa-i) II

and hence (compare 1) in section 2) f(Px)z=j[f(Px-\)+f(Px+i)]' This proves (1) by
induction since (1) is trivial in cases k 0 and k= 1.

c) Let A,// be positive integers and suppose that |x-j|= for xjeR". Then
ko ^

\\f(x)-f(y) II holds true: Because of n>l and 2kg>\x-y\ there exists a

point z g R" with || z-x | >. e || z->> ||. With such a fixed z define ö, 6 by

x z + k(a-z), y z + k(b-z) (2)

and put

x':=z + p(a-z), y' z + p(b-z). (3)

Since | a — z || =g= \\ b — z \\ we hence have the corresponding formulas to (2), (3) for
the images because of b). Now

\\x'-y'\\=g= \\f(x')-f(f) I =p \\f(a)-f(b) \\

and

II /(*) ~f(y) II All f(a) ~f(b) I imply || f(x) -f(y) \=^-.

d) Let r, s be positive rational numbers and let x, y be points such that
rg<\\x-y\\ <sg. Then rg<> \\f(x)-f(y) ||

___ sg: Since «>1 and sg>\\x-y\\
s o

there exists a point z with |z-x|| —- ||z->>|. Now c) implies \\f(z)-f(x) \\

-y- I/(*)-/O0 II and hence ||/(*)-/O0 || ^ ||/(x)-/(z) | + \\f(z)-f(y) \\

sg.

S Q
Put w:=x+~ u(y—x) and observe | w — x \\ =sgand

II H^-^H
_ ||

-0 \\y-x\\=SQ- \\y~x\\ <(s-r)g.

Hence \\f(w)-f(x) \\ =sg by c) and \\f(w)-f(y) \\ <>(s-r)g by the already proved
part of d). This implies

II /(*) ~f(y) I ^ II f(x) ~f(w) || - I /()>) -/(vv) 1 £ 5 e - (5 - r) g r g.
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4. Throughout this section let k > 0 be a fixed real number and / be a mapping of
Rn (1 < n < oo) into itself such that distance k is preserved under / i.e. || x-y || k
implies || f(x) -f(y) | ä: for all xje RM.

Lemma: Suppose that a, ß are positive real numbers such that y (a, ß) >0 (compare
section 2). Suppose moreover that / preserves distances a and ß and that x,y are
points with \\x-y\\=e:= ]/y(a,ß). Then \\f(x)-f(y) \\ e {0, e} and in case 2e > a
we even have | f(x) -f(y) || e.

Pröo/; This is trivial for e a since distance q is preserved. So assume £ 4= q. Let P be
a /?-set such that x,j are the q-associated points of P (compare 3) of section 2). It is

P':=f(P) also a /?-set since distance ß is preserved. If we denote the q-associated
points of P' by x'9y' we get f(x), f(y) e {x'9y'} since distance q is also preserved
under / and since the q-associated points of P' are uniquely determined. This implies
\\f(x)-f(y) 1 e {0,1 x'-y' |} {0,e} according to 2) in section 2. Assume now
2e > q. We have to show that f(x) +f(y). Assume f(x) f(y) and take a z e Rn
with ||z —x|=£ and ||j>-z|=q which exists since n>l and 2exx. The already
proved part of the lemma yields ||/(x)-/(z) || e {0,e}, i.e. \\f(y)~f(z)\\ e {0,^}
because of f(x)=f(y). Hence q= \\y-z \\ \\f(y)-f(z) \\ e {0,e}. This contradicts
e + q > 0.

We note the following three consequences ofour Lemma:

a) Putting q k ß we realize that distance ]/y (q, /?) A: y 2 H is preserved.

b) Putting q j£=Ä:y2(l + — we realize that distance ]/y((x,ß) (n + l)
is preserved. f \ n I n

c) Put a k and ß=ky 2\l + —). Then ||jc-.v|| =]/y(oi,ß) — implies

\\f(x)-f(y)\\ e jo,y), i.e. ||/(*)-/(>>) | ^y for all x,yeR».

2k
If we now take p := — in the Proposition of section 3 and _V := n +1 we realize that

n

f is an isometry according to c), b) and n > 1.

Walter Benz, Math. Seminar, Universität Hamburg
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