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Vietes Tangentenkonstruktion und eine Klasse
ebener Kurven

In dieser Note wird eine Klasse ebener Kurven vorgestellt, fiir welche Viétes Methode
einer analytischen Tangentendefinition in jedem Kurvenpunkt von hoher Genauigkeit
ist. Diese Klasse wird durch eine nichtlineare Differentialgleichung dritter Ordnung
charakterisiert, deren Integration mit Hilfe elliptischer Integrale vollstindig gelingt.
Neben Kreisen und Geraden ergeben sich Schleifen und Spiralen sowie deren an
Kreisen gespiegelte Bilder.

1. Einleitung

Frangois Viete (1540—1603) entwickelte im 8. Buch seiner Varia responsa (Propositio
I1) einen direkten Naherungsprozess zur Tangentenbestimmung im speziellen Fall der
Archimedischen Spirale, vgl. Hofmann [2]. Wir verfolgen Viétes Tangentenkonstruk-
tion gleich fiir hinreichend glatte ebene Kurven in Polarkoordinatendarstellung
r =r(¢); insbesondere sei stets r> + /2 > 0. Es seien P sowie P die zu den Winkeln ¢
bzw. ¢ = h gehorigen Kurvenpunkte. Unter einer Viéteschen Naherungstangente 7 (h)
verstehen wir die AuBere Winkelhalbierende des Dreiecks P_P P, durch den Punkt P.
Es seien a bzw. a (h) die Steigungswinkel der Tangente 7 bzw. der Naherungstangente
7(h). Wegen o (— h) = a (h) gilt stets

a(h)y—a=0h?) fir h—0. (1)

Wir werden im néchsten Abschnitt zeigen, dass die Kurven r = r(¢), fiir die in jedem
Punkt P der Kurve

a(h)—a=0(h* fir h—>0 (2)
gilt, genau die Losungen der nichtlinearen Differentialgleichung (DGI)
V(r):=2(+i)F=3F(A*—6riF+2FP—r*r=0 (3)

sind. Die dadurch beschriebene Klasse ebener Kurven besteht also aus allen Kurven,
fiir welche die Vi¢tesche Tangentenkonstruktion in jedem Kurvenpunkt im Sinne von
(2) gut ist. Fiir die von Viéte betrachtete Archimedische Spirale r = a ¢ gilt iibrigens
V(ad)=a®*2—¢?) £0, d.h. diese Spirale gehort nicht zu der von uns beschriebenen
Klasse.

2. Die Differentialgleichung V (r) = 0

Fir Funktionen f(¢) betrachten wir die beiden Differenzenquotienten

[GDT@D g p - SO=G)

D,f=
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Ist f analytisch, so ist

. h o R
Dif=f_‘t‘5—f+—6-fi 4)
Neben r = r (¢) betrachten wir die beiden Koordinatenfunktionen

x(@)=r(@cos¢ und y(P) =r($)sine.

Fiir die Steigungen m4 = tanoy der beiden Sekanten PP, gilt my = D y/D+ x. Mit
den Normierungsfaktoren

ne=V (Dsx)*+ (Ds y)? =]/(D+ N+ (1 — cos h) r(<1>) r<¢+ h)

berechnet man den Winkel o (h) = 5 (o, + a_) bzw. die entsprechende Steigung m (/)
=tana (h) der Niherungstangente t(4) (etwa aus den Hesseschen Normalformen
der Sekanten P P,) zu

mh)=m_D,y+n,D_y)/(n_Dyx+n,D_x). (5)

Fiir die Steigung m = tana der Tangente 7 gilt m = y/x.
Um die Ndherung genauer zu verfolgen; entwickeln wir nun nach Potenzen des Win-
kels 4. Ist etwa r = r (¢) analytisch, so gilt mit (4)

1
(Dir)2=f2ii'r‘h+—l—é—(4i"r'+3(}“')2) Pt

2
Z—E(l—cosh)r(qﬁ)r(¢ih)=r2i‘rfh+—112-(6r'r'—rz)hzi—il?(Zri’—rr')h3+

o wes .2 o 2 1/2
V" 1 r(r+r) b+ 1 47rF+3(H) 4.-6rr r Bt
r2+ 2 12 r’+ i
s 1 r(r+r)
=Vrr+il1x— 24
Vrits ( 2 P+ 24 Mh )

mit einem fiir den weiteren Verlauf irrelevanten Differentialoperator M = M (r). Mit
(4) erhalten wir daraus die Entwicklung

2

(2 AR D4 ny Doy =2+ 47— 67 D

).

welche nur gerade Potenzen von 4 enthidlt. Beniitzen wir die letzte Entwicklung mit
X (¢) bzw. y (¢) anstelle von f(¢), so erhalten wir

h2 s se o +.
1+ 4tv-~6¥—r-(2l——_rzl+M +..
) 24 y re+r
m =
1+—'—’~2— 4;-6if(r+f)+M +
24 X P+

W [y x A AW (0 W rv(r)
+—4|=——=])-6|=-—— v =m-
(1 24( ( x) 6(y x) r2+f'2)+ TR R *
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mit dem durch (3) erkldrten Differentialoperator V. Daraus ergibt sich schlieBlich

m(h)y —m

o (h) — o = arctan m (h) — arctan m = arctan 1+ m-m(h)

W rv(r

e b Ly
12 (P2+7?)?

d.h. es gilt stets (1), und (2) gilt genau dann in jedem Punkt P, wenn r=r(¢) Losung
der DGI V(r) =0 ist.

3. Reduktion der DGl V' (r) = 0

Offenbar besitzt die DGI (3) die konstanten Losungen r(¢) =ry, also alle Kreise um

den Ursprung O mit Radius 7y. Fiir nichtkonstante Losungen geht (3) durch den
Ansatz

;
s=- (6)
r

iiber in die DGI zweiter Ordnung

1
§= s'2+—2—s(1+s2).

2 1+
Mit dem Ansatz

p(s)=5(¢(9) (7
gelangt man zu der Bernoullischen DGI

s 1 1
+—s(1+s?)—,
1+s2? 2s( s)p

’

_3
P=5

die mit z = p? auf die lineare DGI

, 3s
z=l+szz+s(1+s2) ®)

fihrt. Simtliche Losungen von (8) sind
z=p*=(1+s)?+1(1+sH¥?, JleR.
Damit lautet (7) nun

s=2V(1+5)2+ 1 (1+52)¥2, 9)
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Mit der Substitution

: 1 1
t=s+V1+s? c>s=—2—(t————t—) (10)

und der Hilfsfunktion

dt
H( )= = — 1
H=Ho =] YA+ A+221+1%) s
fiihrt die Integration von (7) auf
t3(p—d)=H(54). (12)

Hat man r=1(¢) aus (12) bestimmt — dies ist wegen H’(f) > 0 stets moglich — und
beachtet (10), so fiihrt Integration von (6) schlieBlich auf die allgemeine Losung

L obzw, D= pfs@rds = pi i) (13)
Fo r

und dabei ist
1
J(t;}.)=f(t-——-t—) H'(t;2)dt . (14)

4. Die Hilfsfunktion H (t;1)

Das Integral (11) ist fiir A=0 und | A| =1 elementar, ansonsten elliptisch. Im einzelnen
gilt:

1 r+1
H (t,0) =arctant, H(@EXl)==x 1[2 Arsinh X1 (15)

Mit Hilfe des elliptischen Integrals 1. Gattung

sing df
F(p, k) = SO V—
(@0 § Va-¢&) (1-k¢Y)

gilt weiter (vgl. [1]):

] 212 )
H(r,A)-u———-——Vl.H,M F(u,VH_M') fiir 0<|4| <1 (16)

mit

t—1
arctan—— fir 0O<i<|
t+1 (17
u=
1+1¢ .
arctan—— fir — 1 <A<0,
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sowie
1 1+]A]
H(l) =———— F(U,V ) fiir [A]>1 (18
V217l 214 :
mit
-1 1-1
arccosV —  fiir A>1
A+1 41
p = (19)
[2=1 1+4¢
arccosl/| | 1—— fir A<—1.
Al +1 1—1¢

S5.DerFalli=0

Hier ist §= £ (1+5?), also s(¢) = tan (¢p— ¢) bzw. s(¢) = cot (¢— ¢), woraus sich
mit (13) als Losungen

r=rycos(p—¢y) und rsin(d—dy) =ry (20)

ergeben, das sind alle Kreise durch den Ursprung und alle Geraden, die den Ursprung
nicht enthalten. In beiden Fillen gilt 7 (h) = 7 (im Falle des Kreises verwende man den
Satz iiber den Mittelpunktswinkel).

6. Der Fall |1| =1
In diesem Abschnitt sei }2u = ¢— @. Aus (12) ergibt sich dann mit Hilfe von (15) die
Formel
2sinhu
s=t———"—,
2—cosh?u

und damit gilt

2 Artanh (—1—16- cosh u) fir 1=1
[s(¢)dp==% |
2 Arcoth (— cosh u) fir A=—-1.

72

Daraus ergeben sich als Losungen

I ugw, To_J2+coshu 1)
ro r |)Y2—coshul

mit |u| <log(1+}2) fir A=1 und |u|> log(1+}2) fir A=—1.
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7.DerFall 0 < |A|* 1

Das Integral (14) lautet hier

Vi+2it+2 +V1+42

J(A)=1lo s . (22)
:4) gH/T+2At+t2-V1+t2)
Nach (13) erhdlt man daraus als Losungen
1+24t+22 +1+42
L bzw. o V V (23)

ro r Vi+22c+2 V142 |
Wir wollen nun noch r=1¢(¢) aus (12) bestimmen. Dazu verwenden wir die reelle
Amplitudenfunktion ¢ =am (y, k), die Umkehrfunktion des elliptischen Integrals

¢

dy
F(pk)=|—r
(®£) (j)Vl-kzsinzl//

sowie die reellen elliptischen Funktionen

sny=sn(y,k) =sinam(y,k) und cny=cn(y, k)= cosam (y,k).

Setzen wir in (12) ¢y=0 — wir sehen also von Drehungen um den Ursprung ab —, so
lautet die fiir (23) benotigte Substitution ¢ = ¢ (¢) wie folgt:

7.1. Der Fall 0< | 1] < 1

2 o
Es seien k=V1+|T/|U und o =1}1+[41] ¢. Aus (12) und (16), d.h. aus o = F (u,k),

ergeben sich mit (17) fiir

+
0<i<1: (=SREESE |a|<p(z,k)
cno —snao 4
und fiir
— 3
-1<1<0: t=w mit Fi,k <|oz1<F——£,k.
sno + cno 4 4
7.2. Der Fall |A| > 1
: 1+ | 4]
Es seien nun k = --2—D—'—- und f= BN ¢. Aus (12) und (18), d. h. aus = F(v,k),

ergeben sich mit (19) fiir
Vi=1 +)i+1 cnp
t= o e
Vi—1—-Vi+1 cnp
A-1
mit IB-F(J—Z—,k)I <F(%,k)—F(arccos — k)

A>1:

2 I+1°
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Figur 1. Der Fall 0 < 1= 1. Aus dem
Ursprung quellende Schleifen im Win-
kelraum
|l =2F(Z,1)=2log(l +12). Figur 2. Der Fall — 1 =1 < 0: Fiir A+ — 1 Schleifen mit punk-
tierter Spiralscheitelkurve
r(d) =(1=Y1+ /0 +)1+2),
d(H)=Q/Y1=2) F(F,V-22/(1-2).
Fiir A =—1 ergibt sich die Spirale (21) mit
¢ > |2log (1+}2).

sowie fur

T 1l enB-V—i=1
Le—1- 1= A+lenp—)-i-1

CY=i+lenp+y—i—1

T _I:‘T VA T
i —. k|- _ — F|— —, k).
mit F(z,k) F(arccosv‘_lﬂ,k) <\B F(z,k)‘<F(2 )

[} Ax A0

Figur 3. Der Fall A > 1: Schleifen mit punktierter Spiralscheitelkurve
r(d) =(T+i=-1)/1+A4+1),
b (A) =V2/AF (5,Y(1+1)/24).

Fiir 4 — oo erhiilt man die Strecke0=r=1,¢=0.
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Figur4. Der Fall A< —1: Halbschleifen,
welche den Nullpunkt mit dem Punkt r=1,
¢ =0 verbinden. Fiir 1 = — oo erhdlt man
die Strecke 0 =r=1,¢=0.

8. Zusammenfassung

Die in Zusammenfassung mit Viétes Naherungsmethode zur Tangentenbestimmung
betrachtete Klasse ebener Kurven besteht aus allen Losungen der DGI1 V() =0. Die
Losungen sind explizit durch (20), (21) und (23) gegeben; dazu kommen noch alle
Kreise r (¢) = const.

A. Voigt, Math. Institut 1, Universitit Karlsruhe
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Aufgaben

Aufgabe 932. Es sei

(/2] (n —k

B )12"‘3", n=0,1,2,...

Man untersuche das Konvergenz- bzw. Divergenzverhalten der Zahlenfolge (a,) in
Abhingigkeit vom reellen Parameter . J. C. Binz, Bolligen
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