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Vietes Tangentenkonstruktion und eine Klasse
ebener Kurven

In dieser Note wird eine Klasse ebener Kurven vorgestellt, fur welche Vietes Methode
einer analytischen Tangentendefinition in jedem Kurvenpunkt von hoher Genauigkeit
ist Diese Klasse wird durch eine nichtlineare Differentialgleichung dritter Ordnung
charakterisiert, deren Integration mit Hilfe elliptischer Integrale vollständig gelingt
Neben Kreisen und Geraden ergeben sich Schleifen und Spiralen sowie deren an
Kreisen gespiegelte Bilder

1. Einleitung

Francis Viete (1540-1603) entwickelte im 8 Buch seiner Varia responsa (Propositio
II) einen direkten Naherungsprozess zur Tangentenbestimmung im speziellen Fall der
Archimedischen Spirale, vgl Hofmann [2] Wir verfolgen Vietes Tangentenkonstruk-
tion gleich fur hinreichend glatte ebene Kurven in Polarkoordinatendarstellung
r r(4>), insbesondere sei stets r2 + r2 > 0 Es seien P sowie P± die zu den Winkeln cj>

bzw cj> ± « gehörigen Kurvenpunkte Unter einer Vieteschen Naherungstangente x («)
verstehen wir die äußere Winkelhalbierende des Dreiecks P-PP+ durch den Punkt P
Es seien a bzw a («) die Steigungswinkel der Tangente t bzw der Naherungstangente

t («) Wegen a (- «) a («) gilt stets

a(«)-a=0(«2) fur «-? 0 (1)

Wir werden im nächsten Abschnitt zeigen, dass die Kurven r r(cj>), fur die in jedem
Punkt P der Kurve

a(«)-a=<9(«4) fur «-> 0 (2)

gilt, genau die Losungen der nichtlinearen Differentialgleichung (DG1)

V(r) =2(r2 + r2)r-3r(r)2-6rrr + 2r3-r2r 0 (3)

sind Die dadurch beschriebene Klasse ebener Kurven besteht also aus allen Kurven,
fur welche die Vi&tesche Tangentenkonstruktion in jedem Kurvenpunkt im Sinne von
(2) gut ist Fur die von Vi&te betrachtete Archimedische Spirale r= a<f> gilt übrigens
V(a<f)) a3 (2 — (j)2) $0, dh diese Spirale gehört nicht zu der von uns beschriebenen
Klasse

2. Die Differentialgleichung V(r) 0

Fur Funktionen f(4>) betrachten wir die beiden Differenzenquotienten

f(6+ h) - f(6) f(cj)) - f(ct>-h)D+f=J_w JW) und D_f=iw> Jw L
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Ist / analytisch, so ist

« «2

D±f f±-f+-f±.... (4)

Neben r=r(cj>) betrachten wir die beiden Koordinatenfunktionen

x (</>) r (cj)) cos cj) und y (cß) r (0) sin cj).

Für die Steigungen «?+ tana+ der beiden Sekanten PP+ gilt m± D±y/D±x. Mit
den Normierungsfaktoren

n± Y(D±x)2+(D±y)2 =|/(D±r)2 + ^ (1 -cosh) r(</>) r(cj)±h)

berechnet man den Winkel a(«) j(a+ + oc_) bzw. die entsprechende Steigung m(h)
tan a («) der Näherungstangente t («) (etwa aus den Hesseschen Normalformen

der Sekanten PP±) zu

m(h) (n_D+y + n+D„y)/(n_D+x + n+D-x). (5)

Für die Steigung m tan a der Tangente t gilt m y/x.
Um die Näherung genauer zu verfolgen,- entwickeln wir nun nach Potenzen des Winkels

«. Ist etwa r= r(cj)) analytisch, so gilt mit (4)

(D± r)2 r2±rrh + — (4rr+3 (r)2) «2 +

2 1 1

-r (1 - cosh) r (cf)) rU± h) r2 ± r r h + (6rr-r2)h2± (2r r'•- r r) «3 +
/r 12 12

ifi .2/1-L *(' + ') «. ¦

* 4rr + 3(r)2 + 6rr-r2 /2^ \1/2
n+ y r + r \l± —r—=- h + —~ 5 hz +

\ r2 + r2 12 r2 + r2 /

mit einem für den weiteren Verlauf irrelevanten DifferentialOperator M= M(r). Mit
(4) erhalten wir daraus die Entwicklung

(r2 + rr2(»-V+«+ö-/) 2(/+|-(4/-6/^+M/)+...),
welche nur gerade Potenzen von « enthält. Benützen wir die letzte Entwicklung mit
.v (cf)) bzw. y (cf)) anstelle von / (<p), so erhalten wir

m(h) m

h Ly /y r(r + r) \
l + —-\4--6^-\ f + M +...24 \ y y r2 + r2 j

h2 I x x r(r + r) \
1 + -^r 4 — 6 \—^- + M\ +

24 \ x x rl + rl

-HK-lH-^h h2 r V(r)
— m z—r =—+

12 jc2(r2 + r2)
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mit dem durch (3) erklärten Differentialoperator V. Daraus ergibt sich schließlich

//x m(h) — m
cc («) - a arctan m («) - arctan m arctan

1 + m - m («)
h2 rV(r)

2 i.2\212 (r2 + r2)
+

d.h. es gilt stets (1), und (2) gilt genau dann in jedem Punkt P, wenn r=r(<p) Lösung
der DG1 V(r) 0 ist.

3. Reduktion der DG1 V(r) 0

Offenbar besitzt die DG1 (3) die konstanten Lösungen r(<t>) r0, also alle Kreise um
den Ursprung O mit Radius r0. Für nichtkonstante Lösungen geht (3) durch den
Ansatz

s -r (6)

über in die DG1 zweiter Ordnung

3 s ~
1

£ — ~s2 + — s(l+s2).
2 l + s2 2

Mit dem Ansatz

p(s) s(4>(s)) (7)

gelangt man zu der Bernoullischen DG1

-p + —s(l+s2)-y 2 l + s2r 2~x~ ~ ' p

die mit z p2 auf die lineare DG1

3s

\+s2
z' ,z + s(\+s2) (8)

führt. Sämtliche Lösungen von (8) sind

z p2 (l + s2)2 + k(l + s2)V2, keR.

Damit lautet (7) nun

s ±Y(l+s2)2 + k(l+s2)y2. (9)
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Mit der Substitution

t s+Yl+s2 <=> ~H"-7)

und der Hilfsfunktion

H(t,k) H(t) \
dt

Y(l + t2)(l+2kt + t2)

führt die Integration von (7) auf
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(10)

OO

±l(0-<fo) //(/;A). (12)

Hat man t t(4>) aus (12) bestimmt - dies ist wegen H'(t) > 0 stets möglich - und
beachtet (10), so führt Integration von (6) schließlich auf die allgemeine Lösung

und dabei ist

bzw. -± e>s{+)d(l,= eJW>9 (13)
'0 r

J(tU) ^t--jjH'(r,k)dt. (14)

4. Die Hilfsfunktion //(*; vi)

Das Integral (11) ist für k 0 und \k\ 1 elementar, ansonsten elliptisch. Im einzelnen

gilt:

H (/; 0) arctan t, H(t;±\) ±-^~ Arsinh ^-L. (15)

Mit Hilfe des elliptischen Integrals 1. Gattung

sin</> ir

Fm)={ 1/(1-^(1-^)
gilt weiter (vgl. [1]):

mit

arctan für 0 < k < 1

/+1

arctan für - 1 < k < 0l-t
(17)
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sowie

H(t;k) -
mit

arccos

arccos

fl\k *n \k\
für U|>1 (18)

k\-l l + t

k\ + l l-t

für k > 1

für k < - 1

(19)

5. Der Fall k 0

Hier ist s + (1+S2), also s(4>) tan (4>-(j)0) bzw. s((ß) cot(0-0n), woraus sich
mit (13) als Lösungen

r= r0cos(</>— (/)0) und r sin((/>—0O) r0 (20)

ergeben, das sind alle Kreise durch den Ursprung und alle Geraden, die den Ursprung
nicht enthalten. In beiden Fällen gilt x («) t (im Falle des Kreises verwende man den
Satz über den Mittelpunktswinkel).

6.DerFall|A| l

In diesem Abschnitt sei y^w cj>— 0O. Aus (12) ergibt sich dann mit Hilfe von (15) die
Formel

*=+-
2 sinh u

2- cosh2 u

und damit gilt

fs(0)#=±
2Artanh —r-coshu\ für A 1

f2

2Arcoth |-T-coshw) für k= - 1

Daraus ergeben sich als Lösungen

r r0 ]/2 + cosh u
— bzw. —=-i—
r0 r ||/2-coshw

(21)

mit \u\ <log(l+f2) für k= 1 und | u \ > log(l +]/2) für A - 1.
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7.DerFallO<|„|*l

Das Integral (14) lautet hier

Vl + 2Ä7+? + /T+?
J(U) log

l/T+2A~i W- .2t + tz - VI + t

Nach (13) erhält man daraus als Lösungen

r t r0 Y1 + 2k t +12 + flVt2
— bzw. — —.
'o r \fl + 2kt + t2 ~Yl + ^\

(22)

(23)

Wir wollen nun noch t=t(4>) aus (12) bestimmen. Dazu verwenden wir die reelle

Amplitudenfunktion 0= am (y, k), die Umkehrfunktion des elliptischen Integrals

F(cf>,k) i-
dxp

o Kl- &2sinV

sowie die reellen elliptischen Funktionen

sn y sn (y, k) sin am (y, k) und cn y cn (y, k) cos am (y, k).

Setzen wir in (12) cß0= 0 — wir sehen also von Drehungen um den Ursprung ab —, so
lautet die für (23) benötigte Substitution t t(cß) wie folgt:

7.1. Der Fall 0<\k\<l

Es seien k V—L_L un(j a== {fl+]/l| cj). Aus (12) und (16), d.h. aus a F(u,k),
r 1 + | k\

ergeben sich mit (17) für

cn a + sn a __
/ n0<A<1: /= mit a \<F — ,k

cn a - sn a \ 4

und für

sna-cna n \ l3n-1<A<0: t= mit F\—,k\<(x<F\—,k\.
sna + cna \4 /

' '

\ 4 '

V"TUI Und ßl 2 * ÄUS (12) Und (18)' d'h* aUS ß=F(v>k)>

7.2. Der Fall \k\>\

Es seien nun k

ergeben sich mit (19) für

Yk-\ +f/l+l cnyg

Yk-l -fl+T cn^
A>1: /

mit ß-F[Tk < F\ —, k) - F\ arccos VM-
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XM

KsO.*

o* O^

+
*-i4I

Figur 1 Der Fall 0 < X =1 1 Aus dem

Ursprung quellende Schleifen im
Winkelraum

|0|_l2F(f,l) 21og(l+f2)

sowie fur

k<- 1.

mit

A3

K* 35

X?»
V*

Figur 2 Der Fall - 1 _l A < 0 Fur A * - 1 Schleifen mit
punktierter Spiralscheitelkurve

r(X) =(l-Vrl+A)/(l+l/l-h/l),
4>(X) (2/fl - A) F(j,f-2A/(l -X))

Fur X - 1 ergibt sich die Spirale (21) mit
4>>f21og(l+f2)

f-k+l cnß-y-k- 1

l^T+T cnß + y-k-T
l/Bzl
V -A+lF\ —, k) - FJ arccos ,k ß-F\j,k <F\-,k

\*AO

X*400

x«x

/XnA

X*4A

K-HOOO

Figur 3 Der Fall X > 1 Schleifen mit punktierter Spiralscheitelkurve

r(A) =(yl + A-l)/(Vl+A+l),
<f>(X) l/2fXF(j,f(\+X)/2X)

Fur X -* oo erhalt man die Strecke 0 _a r _s 1, $ 0
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X»-4t0004

X«-4,004

X-»-4,04

\*~40

X*-X

X«-H,4

Figur 4 Der Fall A < - 1 Halbschleifen,
welche den Nullpunkt mit dem Punkt r 1,

</> 0 verbinden Fur A -*¦ - co erhalt man
die Strecke 0 __ r _i 1, 0=0

8. Zusammenfassung

Die in Zusammenfassung mit Vi&tes Näherungsmethode zur Tangentenbestimmung
betrachtete Klasse ebener Kurven besteht aus allen Lösungen der DG1 V(r) 0. Die
Lösungen sind explizit durch (20), (21) und (23) gegeben; dazu kommen noch alle
Kreise r (</>) const.

A. Voigt, Math. Institut 1, Universität Karlsruhe
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Aufgaben

Aufgabe 932. Es sei

[n/2]

¦I*=-0

n — k 2n-3k n 0,1,2,.

Man untersuche das Konvergenz- bzw. Divergenzverhalten der Zahlenfolge (a„) in
Abhängigkeit vom reellen Parameter t. j c Binz ß0ujgen
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